coronary artery diameter was measured by quantitative angiography. An incremental pacing protocol that raised heart rate to a maximum of 150 bpm was undertaken in all patients via a temporary right atrial pacing wire. Pacing was performed in the presence of saline vehicle and then either L-NMMA or SMTC (one inhibitor per patient; n=9 each group).

Results

SMTC (0.625 μmol/min) and L-NMMA (25 μmol/min) both reduced basal CBF to a similar extent (−22.8%±1.24% vs −26.8%±2.16%; n=9 each; p=NS). During saline infusion, CBF increased with atrial pacing from 58.7±9.90 to 87.4±17.3 ml/min (n=9, p<0.05). During L-NMMA, the increase in CBF was significantly blunted compared to that during saline (ΔCBF 17.7±4.54 ml/min vs 28.7±8.08 ml/min during saline; n=9, p<0.05 by 2-way ANOVA). In patients receiving SMTC, however, the increase in CBF with pacing was similar to that during saline (ΔCBF 36.5±6.05 ml/min vs 25.2±6.65 ml/min during saline; n=9, p=NS by 2-way ANOVA). SMTC and L-NMMA both reduced basal coronary artery diameter to a similar extent (n=9). L-NMMA blunted the pacing-induced increase in coronary artery diameter (n=9; p<0.05 vs saline vehicle) whereas SMTC had no effect (n=9; p=NS).

Conclusion

These results suggest that increases in human coronary blood flow in response to incremental atrial pacing are mediated by eNOS-derived NO rather than nNOS-derived NO.

Funding

Supported by the British Heart Foundation.

107 REMOTE ISCHAEMIC PRECONDITIONING AND HUMAN ATRIAL TRABECULAE IN THE DIABETIC HEART

doi:10.1136/heartjnl-2012-301877b.107

1 R Sirohi, 1 L Candilio,* 1 G Babu, 2 N Roberts, 2 D Lawrence, 2 A Sheik, 2 S Kolvekar, 1 J Yap, 1 D J Hausenloy, 1 D M Yellon. 1 The Haett Cardiovascular Institute, London, UK; 2 The Heart Hospital, University College London Hospital, London, UK

Introduction

Remote ischaemic preconditioning (RIPC) using brief cycles of upper or lower limb ischaemia and reperfusion has been reported to protect the heart against ischaemia-reperfusion injury (IRI). Previous studies suggest that the diabetic heart is more resistant to the cardioprotective effects of myocardial ischaemic preconditioning. Whether the diabetic heart is amenable to RIPC is unknown and is investigated in this study.

Methods

Non-diabetic and diabetic patients undergoing elective coronary artery bypass graft (CABG) surgery were randomised to receive three different treatment protocols after the induction of anaesthesia: (1) Control—no RIPC; (2) RIPC1 comprising 3-five min cycles of upper arm cuff inflation/deflation; or (3) RIPC2 comprising 2-five min cycles of simultaneous upper and lower limb cuff inflations/deflations (total 4). A section of the right atrial appendage was harvested, from which atrial trabeculae were isolated and subjected to 90 min simulated ischaemia and 120 min simulated reperfusion, at the end of which the recovery of baseline contractile function was determined.

Results

Atrial trabeculae harvested from diabetic (N=13 patients) and non-diabetic control patients (N=20 patients) were demonstrated to recover 24.5%±2.4% and 29.3%±1.3% of baseline contractile function, respectively. Prior treatment of patients with RIPC1 increased the recovery of function in both non-diabetic (50.4%±1.9%; p<0.05) and diabetic (41.6%±1.9%; p<0.05) patients. Interestingly, the stronger RIPC2 stimulus resulted in a greater recovery of function in both non-diabetic (59.3%±1.9%; p<0.05) and diabetic (50.7%±2.1%; p<0.05) patients. As a positive control direct hypoxic preconditioning (HPC) of atrial trabeculae also improved the recovery of function (56.4%±1.8% with HPC vs 27.5%±1.7% in control; N=10 patients; p<0.05). The administration of the MEK-Erk1/2 inhibitors U0126 and PD98059 at the onset of reperfusion abrogated the protective effect in both non-diabetic (30.9%±0.8% U0126 and 31.3%±0.8% PD98059; p>0.05) and diabetic (28.6%±0.9% U0126 and 30.0%±1.2% PD98059; p>0.05) atrial trabeculae.

Conclusion

We demonstrate for the first time that in vivo RIPC can protect ex vivo atrial trabeculae against simulated IRI. Both non-diabetic and diabetic atrial trabeculae were amenable to RIPC protection. Increasing the intensity of the RIPC stimulus resulted in greater functional recovery. The pro-survival kinase MEK-Erk1/2 appears to contribute to RIPC protection in human atria trabeculae.

Funding

Funded by the Leicester NIHR Cardiovascular Biomedical Research Unit.