CLINICAL APPLICATION OF LEFT VENTRICULAR SYSTOLIC FUNCTION IN PATIENTS WITH RHEUMATIC MILD TO MODERATE MITRAL STENOSIS BY THREE-DIMENSIONAL ULTRASOUND SPECKLE TRACKING IMAGING

doi:10.1136/heartjnl-2012-302920ad.37
He Li, Mingxing Xie. Department of Ultrasonography, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Key Laboratory of Molecular Imaging, Wuhan 430022, China

Objectives To assess left ventricular (LV) global and regional systolic function in patients with pure mild to moderate rheumatic mitral stenosis (MS) by 3-dimensional ultrasound speckle tracking imaging (3D-STI)

Methods Fifty patients with pure mild to moderate rheumatic MS were enrolled in this study, 40 normal subjects matched with age and sex were selected as control groups. LV 3D-global longitudinal peak systolic strain, 3D-regional peak systolic strain in 16 segments of left ventricular basal, papillary muscle and apical levels were measured in all subjects by 3D-STI from the apical full-volume image and compared between groups. LV ejection fraction (LVEF) was acquired from 3D-STI.

Results Despite normal LV systolic function as assessed by ejection fraction, mean global longitudinal strain (GLS) was significantly reduced in patients with isolated mild to moderate rheumatic MS (p<0.05). Regional analysis demonstrated that patients with MS had a significantly reduced 3D-regional peak strain in all basal, and some mid (inferior, anteroseptal, posteroseptal) segments of the left ventricle. For other segments 3D-regional peak strain values were similar among the groups. A Pearson correlate revealed that LV GLS corresponded with LVEF (r=0.601, p<0.001) in patients with isolated MS, and LV GLS correlated with LVEF in normal subjects (r=0.709, p<0.001).

Conclusions LV global 3D strain decreases in patients with pure mild to moderate rheumatic mitral stenosis in the subclinical period. 3D-STI can identify early abnormalities of LV systolic function in MS patients who had apparently normal LVEF.