Results Compared with Wistar-Kyoto rats (WKY), whole body and myocardial insulin sensitivity decreased in SHR as manifested by increased fasting blood glucose (6.24 ± 0.21 vs. 5.18 ± 0.19 mmol/l, n=6,p<0.05) and decreased insulin-induced cardiac function changes especially for±LVdp/dtmax respectively, which was partly attributable to decreased PPAR γ expression in myocardium (0.72 ± 0.08 vs 1.08 ± 0.07 , n=4, p<0.05). Moreover, 9-week swimming training not only attenuated the fasting blood glucose (5.54+0.16 vs 6.24 ± 0.21 mmol/l, n=6, p<0.05) improved cardiac function and enhanced myocardial response to insulin in vivo in SHR, but also increased myocardial PPAR γ and subsequent Akt expressions (1.18 ± 0.12 vs 0.72 ± 0.08 , n=4, p<0.01 and 0.953 ± 0.13 vs 0.514 ± 0.14 , n=4, p<0.05) in SHR.

Conclusions These data demonstrate that 9-week swimming training increased myocardial PPAR γ and subsequent Akt expressions in SHR, which is partly involved in improved myocardial insulin sensitivity. The present findings also indicate that the decreased PPAR γ expression and subsequent phosphatidylinositol 3-kinase (PI-3 kinase)/Akt signalling perhaps plays a causative role in the impaired inotropic response to insulin in SHR heart . Thus, AE merges as an important choice in future SHR preclinical and clinic investigation .

GW23-e2071

LONG-TERM AEROBIC EXERCISE INCREASES MYOCARDIAL PPARY EXPRESSION IN SPONTANEOUSLY HYPERTENSIVE RATS

doi:10.1136/heartjnl-2012-302920a.115

Kun-Ru Zhang, Wei Wang, Su-Li Guo, Ai-Jing Qu, Kun-Ru Zhang. Sports College of Shaanxi Normal University

Objectives It is well known that cardiac insulin resistance exists in spontaneously hypertensive rats (SHR), which is attributable to decreased peroxisome proliferator-activated receptor-gamma (PPAR γ) expression in myocardium . However, the effects of aerobic exercise (AE) on myocardial insulin sensitivity in SHR rats are largely unclear. Therefore, the present study aimed to determine the effects of 9-week swimming training on myocardial insulin sensitivity in SHR and the underlying mechanism, with the special focus on the role of exercise in myocardial PPAR γ expression.

Methods 4-weeks-old SHR were randomly subjected to 9 weeks of either sedentary or freeloading swimming exercise (2 h/day, 5 d/week). Blood glucose, cardiac systolic/diastolic function and PPAR γ , protein kinase B (Akt) expressions in myocardium were determined at the end of exercise.

E48 Heart 2012;**98**(Suppl 2): E1–E319