GW23-e1039 ## THE EFFECTS OF CARDIAC RESYNCHRONISATION THERAPY ON INWARD RECTIFIER K+ CURRENT (IK1) IN DYSSYNCHRONOUS ISCHAEMIC HEART FAILURE doi:10.1136/heartjnl-2012-302920a.117 ¹Yang Zhen, ²Yu Xin, ¹Wang Xue-zhong, ¹Sha Yong, ¹Na Li-sha, ¹Jia Shao-bin, ¹Jia Shao-bin. ¹Heart Center, the General Hospital of Ningxia Medical University; ²School of Laboratory Medicine, Ningxia Medical University **Objectives** To investigate the change in inward rectifier K^+ current (I_{K1}) in dessynchronous ischaemic heart failure and the electrophysiological consequences of cardiac resynchronization therapy (CRT). **Methods** The mode of dessynchronous ischaemic heart failure of dogs was established by ablation of left bundle branch and ligation of left anterior descending artery (n=14). After CRT for 6 weeks (n=7), the myocytes of interventricular septal and anterior left ventricular wall were dissected and the whole cell membranous clamp was used to detect the I_{K1} , and the hemodynamic and echocardiographic parameters were measured during the process. Results The QRS intervals and the corrected QT durations in dyssynchronous ischaemic heart failure were prolonged compared with control $(100\pm23 \text{ms vs } 53\pm8 \text{ ms}, p<0.05;433\pm46 \text{ ms vs } 378\pm32 \text{ms},$ p<0.05). CRT reduced the prolonged period of QRS and QTc in dyssynchronous ischaemic heart failure (73±11ms vs 100±23ms, p<0.05; 392 \pm 36ms vs 433 \pm 46ms, p<0.05). The peak inward I_{K1} densities in both interventricular septal and lateral myocyte in dyssynchronous ischaemic heart failure were reduced compared with control group $(0.70\pm0.31 \text{ vs } 1.60\pm0.28, p<0.05; 1.20\pm0.34 \text{ vs } 1.75$ ± 0.31 , p<0.05), and there was a significant difference in I_{K1} in dyssynchronous ischaemic heart failure between interventricular septal and lateral myocardium (0.70 \pm 0.31 vs 1.20 \pm 0.34, p<0.05). CRT restored partially these changes in I_{K1} induced by dyssynchronisation via increasing I_{K1} in both interventricular septal and lateral myocardium $(1.50\pm0.30 \text{ vs } 0.70\pm0.31, \text{ p}<0.05; 1.65\pm0.39 \text{ vs } 1.20\pm0.34,$ p<0.05) and reducing the difference in I_{K1} between interventricular septal and lateral myocardium in dyssynchronous ischaemic heart failure $(1.50\pm0.30 \text{ vs } 1.65\pm0.39, \text{ p}>0.05)$. **Conclusions** CRT reversed partially the I_{K1} remodelling in dyssynchronous ischaemic heart failure, whereby reduced the regional heterogeneity of I_{K1} .