Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ heartjnl-2015-308850).
${ }^{1}$ Centre for Health Economics, University of York, York, UK
${ }^{2}$ Faculty of Medicine and Health, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
${ }^{3}$ Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College, London, UK
${ }^{4}$ Department of Health Sciences, University of Leicester, Leicester, UK ${ }^{5}$ NIHR Biomedical Research Unit, Barts and the London NHS Trust, London, UK

## Correspondence to

Miqdad Asaria, Centre for Health Economics, University of York, Alcuin A Block, Heslington, York YO10 5DD, UK;
miqdad.asaria@york.ac.uk
Statistical package: R (V.3.1.0) and the $R$ package flexsurv (V.0.3) were used to conduct the statistical analysis in the paper.

Received 15 October 2015
Revised 11 January 2016
Accepted 14 January 2016

## To cite: Asaria $\mathrm{M}_{\mathrm{S}}$

 Walker S, Palmer S, et al. Heart Published Online First: [please include Day Month Year] doi:10.1136/heartjnl-2015-308850ORIGINAL ARTICLE

# Using electronic health records to predict costs and outcomes in stable coronary artery disease 

Miqdad Asaria, ${ }^{1}$ Simon Walker, ${ }^{1}$ Stephen Palmer, ${ }^{1}$ Chris P Gale, ${ }^{2}$ Anoop D Shah, ${ }^{3}$ Keith R Abrams, ${ }^{4}$ Michael Crowther, ${ }^{4}$ Andrea Manca, ${ }^{1}$ Adam Timmis, ${ }^{5}$ Harry Hemingway, ${ }^{3}$ Mark Sculpher ${ }^{1}$


#### Abstract

Objectives To use electronic health records (EHR) to predict lifetime costs and health outcomes of patients with stable coronary artery disease (stable-CAD) stratified by their risk of future cardiovascular events, and to evaluate the cost-effectiveness of treatments targeted at these populations. Methods The analysis was based on 94966 patients with stable-CAD in England between 2001 and 2010, identified in four prospectively collected, linked EHR sources. Markov modelling was used to estimate lifetime costs and quality-adjusted life years (QALYs) stratified by baseline cardiovascular risk. Results For the lowest risk tenth of patients with stable-CAD, predicted discounted remaining lifetime healthcare costs and QALYs were $£ 62210$ ( $95 \%$ Cl £33 724 to $£ 90043$ ) and 12.0 ( $95 \% \mathrm{Cl} 11.5$ to 12.5) years, respectively. For the highest risk tenth of the population, the equivalent costs and QALYs were £35 549 ( $95 \%$ Cl $£ 31679$ to $£ 39$ 615) and 2.9 ( $95 \%$ Cl 2.6 to 3.1 ) years, respectively. A new treatment with a hazard reduction of $20 \%$ for myocardial infarction, stroke and cardiovascular disease death and no sideeffects would be cost-effective if priced below $£ 72$ per year for the lowest risk patients and $£ 646$ per year for the highest risk patients. Conclusions Existing EHRs may be used to estimate lifetime healthcare costs and outcomes of patients with stable-CAD. The stable-CAD model developed in this study lends itself to informing decisions about commissioning, pricing and reimbursement. At current prices, to be cost-effective some established as well as future stable-CAD treatments may require stratification by patient risk.


## INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of mortality in England with approximately a third of all deaths attributed to it. ${ }^{1}$ The combination of an ageing population and improvements in survival after acute coronary syndrome ${ }^{2}$ has resulted in a large and growing number of patients with stable coronary artery disease (stable-CAD). CVD has, therefore, also become a major source of morbidity and healthcare resource use: there are $>5$ million people living with CVD in England costing the National Health Service (NHS) more than $£ 30$ billion per year. ${ }^{3}{ }^{4}$ The stable-CAD population serves as an important example of a patient population suffering from a long-term condition.

With such conditions becoming increasingly prevalent, questions regarding their prognosis have become increasingly important. ${ }^{5}$ 6 The prognosis for patients with stable-CAD is particularly topical with new treatments, ${ }^{7}$ and new applications of existing treatments, ${ }^{8}$ currently undergoing phase III trials in this patient population.

Thus far, the majority of models to estimate the costs and health effects of CVD have focused on primary prevention, ${ }^{9}{ }^{10}$ have made predictions only over relatively short time horizons (up to 10 years) ${ }^{11}$ so are unable to estimate lifetime costs and health effects, are based on selected samples ${ }^{12}$ potentially biasing baseline risk and cost estimates hence limiting their generalisability or fail to model all relevant endpoints and their interdependence. ${ }^{13}$ The use of linked electronic health records (EHR) can help to address many of these limitations in modelling the costs and outcomes in chronic diseases providing a source of long-term data, capturing a wide range of clinical endpoints and recording resource use in a real-world setting. As far as we are aware, there has been limited use of EHR in decision modelling.

The availability of primary care data linked with hospitalisation data, disease-specific registries and mortality data makes the English NHS an attractive setting in which to develop and demonstrate our approach for modelling the long-term costs and outcomes of chronic disease. The CALIBER (CArdiovascular disease research using Linked BEspoke studies and Electronic Health Records) data platform ${ }^{14}$ used in this study combines these key datasets and has been shown to be a valuable resource for cardiovascular epidemiology. ${ }^{12} \quad$ 15-17 This paper reports on the use of CALIBER to model prognosis in patients with stable-CAD, estimating their baseline risk of experiencing further CVD events and then predicting both costs and key health outcomes over the lifetime of these patients stratified by their baseline CVD risk. In doing so, the model provides a better understanding of the implications of this growing population under current standards of care as well as a framework for the evaluation of the cost-effectiveness of new treatment strategies, potentially differentiated by risk group.

## METHODS

## Patient population

The model was based on the analysis of 94966 patients with stable-CAD from the CALIBER
collaboration. CALIBER links primary care data from the Clinical Practice Research Datalink with EHR from the Myocardial Ischaemia National Audit Project Registry, hospital inpatient records from Hospital Episode Statistics and causespecific mortality from the Office for National Statistics. The CALIBER dataset has been described in detail by Denaxas et al. ${ }^{14}$ Patients with stable-CAD were defined as those patients in the CALIBER dataset who were event free for at least 6 months after having had unstable angina, ST elevation myocardial infarction (STEMI) or non-STEMI (NSTEMI) or those patients with stable angina or other coronary heart disease (CHD) diagnoses. The median follow-up of these patients was 4.2 (IQR 1.9-6.9) years, during which 16783 patients died and 8203 patients experienced one or more non-fatal coronary outcomes.

## Endpoints

The primary clinical endpoints were first occurrences of nonfatal myocardial infarction (MI), ischaemic stroke and haemorrhagic stroke, as well as CVD and non-CVD mortality. Other clinical endpoints were CVD and non-CVD mortality following a non-fatal event. These were combined to produce the primary economic outputs from the model which were quality-adjusted life years (QALYs) as well as total and CVD-specific costs, each predicted over the remaining lifetime of the patient. The model was also used to produce estimates of event rates and disease progression over time stratified by baseline CVD risk.

## Model

A state transition model (shown in figure 1) was developed to capture the natural history of patients with stable-CAD. The structure of the model was determined with reference to both previous models in CVD ${ }^{13}$ and expert clinical advice. All patients entered the model in the stable-CAD state and progressed through the model until they experienced either CVD
or non-CVD mortality. The time horizon of the model was, therefore, the patient's remaining lifetime. The model captured time varying and age-dependent risks, costs and health-related quality of life (HRQoL) in 90-day segments. Costs and HRQoL were attached to model states and, in order to stratify by patients' baseline risk, adjusted for patient covariates at baseline as well as for age and for time elapsed following non-fatal events. Model predicted costs, life years and QALYs were discounted at $3.5 \%$ per annum in keeping with the guidelines in England. ${ }^{18}$ While only first occurrences of non-fatal CVD events were explicitly modelled, further non-fatal events were implicitly captured in the time varying risk, cost and HRQoL estimates.

## Statistical modelling of risk equations

Rapsomaniki et al ${ }^{19}$ developed, tested and validated a range of prognostic models for patients with stable-CAD using the CALIBER dataset. We built on their recommended prognostic model, using it as the basis for the risk equations underpinning the prediction of the five primary clinical endpoints. Using the prognostic factors and missing data imputation algorithm of Rapsomaniki et al ${ }^{19}$ we estimated various parametric survival models (generalised gamma, lognormal, Weibull, exponential) for each of the five endpoints. For each endpoint the best fitting parametric model was selected as determined by the Akaike information criteria. Predictions resulting from the selected models were assessed for plausibility by clinical experts (AT, CPG, ADS, HH). Key prognostic factors included in the models were demographic measures (age, sex, social deprivation), stable-CAD subtype (stable angina, unstable angina, STEMI, NSTEMI and other CHD), use of long-acting nitrates, whether coronary artery bypass graft or percutaneous coronary intervention (PCI) had been performed in the 6 months following CAD diagnosis, previous MI, smoking, blood pressure, diagnosis of hypertension, diabetes, lipids,


Figure 1 Structure of the Markov model and the role played by the 11 risk equations that we use to model disease progression.

Table 1 Patient characteristics by risk group

| Risk group | Lowest risk | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Highest risk | Overall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Patient average covariate profiles based on tenths of patient population grouped by 5-year risk of composite CVD event estimated at baseline |  |  |  |  |  |  |  |  |  |  |  |
| Number of patients in dataset | 10035 | 9903 | 9797 | 9626 | 9516 | 9455 | 9382 | 9335 | 9249 | 8668 | 94966 |
| 5 -year risk (\%; average across patients) | 3.69 | 5.70 | 7.37 | 9.15 | 11.20 | 13.71 | 17.14 | 22.14 | 30.42 | 52.37 | 16.68 |
| 5 -year risk (\%; at average covariate values) | 3.46 | 5.43 | 6.95 | 8.53 | 10.36 | 12.57 | 15.64 | 20.07 | 27.23 | 44.18 | 11.64 |
| Sociodemographic characteristics |  |  |  |  |  |  |  |  |  |  |  |
| Sex (\% female) | 64 | 48 | 42 | 39 | 37 | 37 | 38 | 42 | 44 | 46 | 44 |
| Age (years if male) | 49 | 55 | 59 | 62 | 65 | 67 | 71 | 74 | 77 | 81 | 67 |
| Age (years if female) | 53 | 62 | 67 | 70 | 73 | 75 | 78 | 80 | 83 | 87 | 72 |
| Age (weighted average) | 52 | 59 | 62 | 65 | 68 | 70 | 73 | 76 | 80 | 84 | 69 |
| Most deprived quintile (\%) | 15 | 17 | 18 | 19 | 20 | 21 | 21 | 22 | 22 | 24 | 20 |
| Stable-CAD diagnosis (\%) |  |  |  |  |  |  |  |  |  |  |  |
| NSTEMI | 0 | 1 | 3 | 5 | 8 | 10 | 12 | 17 | 23 | 43 | 10 |
| STEMI | 1 | 4 | 8 | 12 | 13 | 14 | 13 | 9 | 6 | 4 | 7 |
| Unstable angina | 10 | 13 | 12 | 12 | 12 | 12 | 13 | 15 | 17 | 15 | 14 |
| Stable angina | 78 | 65 | 56 | 49 | 43 | 39 | 37 | 34 | 29 | 18 | 47 |
| Non-specific CHD | 11 | 17 | 20 | 22 | 24 | 24 | 25 | 26 | 25 | 20 | 23 |
| Stable-CAD severity (\%) |  |  |  |  |  |  |  |  |  |  |  |
| PCI in past 6 months | 9 | 12 | 13 | 14 | 13 | 13 | 11 | 9 | 6 | 4 | 9 |
| CABG in past 6 months | 9 | 7 | 6 | 5 | 5 | 4 | 4 | 3 | 2 | 1 | 4 |
| Previous/recurrent MI | 2 | 6 | 10 | 14 | 18 | 23 | 26 | 29 | 32 | 43 | 18 |
| Use of nitrates | 10 | 16 | 19 | 21 | 24 | 28 | 33 | 37 | 43 | 56 | 28 |
| CVD risk factors |  |  |  |  |  |  |  |  |  |  |  |
| Smoking status (\%) |  |  |  |  |  |  |  |  |  |  |  |
| Current smoker | 31 | 35 | 36 | 37 | 38 | 38 | 37 | 35 | 32 | 30 | 35 |
| Ex-smoker | 27 | 30 | 31 | 32 | 32 | 33 | 34 | 34 | 34 | 34 | 32 |
| Never smoked | 41 | 35 | 33 | 31 | 30 | 29 | 29 | 31 | 33 | 36 | 33 |
| Hypertension (\%) | 69 | 70 | 71 | 71 | 72 | 74 | 76 | 79 | 83 | 87 | 76 |
| Diabetes (\%) | 4 | 8 | 10 | 12 | 14 | 16 | 18 | 21 | 24 | 32 | 16 |
| Total cholesterol ( $\mathrm{mmol} / \mathrm{L}$ ) | 4.95 | 4.91 | 4.84 | 4.79 | 4.74 | 4.74 | 4.70 | 4.68 | 4.64 | 4.54 | 4.79 |
| HDL (mmol/L) | 1.41 | 1.37 | 1.35 | 1.35 | 1.35 | 1.35 | 1.36 | 1.37 | 1.37 | 1.35 | 1.37 |
| CVD comorbidities (\%) |  |  |  |  |  |  |  |  |  |  |  |
| Heart failure | 5 | 7 | 9 | 12 | 15 | 19 | 27 | 37 | 52 | 73 | 26 |
| Peripheral arterial disease | 1 | 2 | 3 | 4 | 6 | 8 | 10 | 13 | 16 | 25 | 8 |
| Atrial fibrillation | 3 | 5 | 7 | 9 | 10 | 13 | 16 | 21 | 29 | 43 | 15 |
| Stroke | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 14 | 22 | 39 | 9 |
| Non-CVD comorbidities (\%) |  |  |  |  |  |  |  |  |  |  |  |
| Chronic kidney disease | 2 | 2 | 3 | 4 | 4 | 5 | 7 | 9 | 12 | 20 | 7 |
| Chronic obstructive pulmonary disease | 20 | 20 | 20 | 21 | 22 | 23 | 25 | 27 | 28 | 30 | 23 |
| Cancer | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 13 | 14 | 12 | 9 |
| Chronic liver disease | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Psychosocial characteristics |  |  |  |  |  |  |  |  |  |  |  |
| Depression at diagnosis (\%) | 20 | 17 | 15 | 15 | 14 | 14 | 15 | 17 | 18 | 21 | 17 |
| Anxiety at diagnosis (\%) | 7 | 6 | 6 | 7 | 7 | 7 | 8 | 8 | 10 | 12 | 8 |
| Biomarkers |  |  |  |  |  |  |  |  |  |  |  |
| Heart rate (bpm) | 72 | 71 | 71 | 71 | 71 | 71 | 72 | 73 | 74 | 76 | 72 |
| Creatinine ( $\mathrm{mmol} / \mathrm{L}$ ) | 88 | 92 | 95 | 96 | 98 | 100 | 101 | 104 | 109 | 125 | 100 |
| White cell count ( $10^{9} / \mathrm{L}$ ) | 6.81 | 7.05 | 7.19 | 7.31 | 7.44 | 7.54 | 7.62 | 7.76 | 7.88 | 8.22 | 7.46 |
| Haemoglobin ( $\mathrm{g} / 100 \mathrm{~mL}$ ) | 1.43 | 1.43 | 1.42 | 1.41 | 1.39 | 1.37 | 1.35 | 1.32 | 1.28 | 1.22 | 1.36 |

Deprivation measured by index of multiple deprivation, 2010. All values in table are means. Percentage of missing data imputed: smoking status 32\%, total cholesterol 54\%, HDL 55\%, heart rate $78 \%$, creatinine $38 \%$, white cell count $56 \%$ and haemoglobin $53 \%$.
CABG, coronary artery bypass graft; CAD, coronary artery disease; CHD, coronary heart disease; CVD, cardiovascular disease; HDL, high-density lipoprotein; MI, myocardial infarction; NSTEMI, non-ST segment elevation myocardial infarction; PCI, percutaneous coronary intervention; stable-CAD, stable coronary artery disease; STEMI, ST segment elevation myocardial infarction.

CVD comorbidities (heart failure, peripheral arterial disease, atrial fibrillation, stroke), non-CVD comorbidities (chronic renal disease, chronic obstructive pulmonary disease, cancer, chronic liver disease), psychosocial factors (depression, anxiety) and clinically assessed biomarkers (heart rate, white cell count, haemoglobin, creatinine).

Risk equations for the six subsequent events, namely, CVD and non-CVD mortality following non-fatal MI, ischaemic stroke and haemorrhagic stroke, were estimated in a similar way. However, due to the greatly reduced numbers of events observed, these use only sex and age at time of non-fatal event as covariates. Non-CVD mortality beyond the maximum


Figure 2 Proportion of patients in each of the six model states over time as predicted by the Markov model used in this study. Each plot within the panel represents a risk decile as categorised by the baseline 5 -year CVD event risk ranging from the lowest risk decile (1) to the highest risk decile (10). As can be seen in the plots the model is run until all the patients in the cohort have experienced either a fatal CVD or a fatal non-CVD event. CVD, cardiovascular disease; MI, myocardial infarction.
follow-up in the CALIBER dataset (10 years) was based on age/sex-specific non-CVD mortality from national life tables. ${ }^{20}$

These risk equations were developed into cumulative incidence functions which were then combined using a competing risks framework to account for the interdependence of the outcomes. We used methods outlined by Putter et al ${ }^{21}$ that acknowledge state transition probabilities are affected by the event being modelled and also by the other events that could occur from a given health state. Survival models were estimated using R (V.3.1.0) and the R package flexsurv (V.0.3).

## Resource use and costs

Healthcare resource use was estimated directly from the CALIBER dataset. A panel was constructed using a 90 -day cycle length for patients with stable-CAD in CALIBER capturing resource use in terms of hospital episodes, use of drugs, diagnostic tests and primary care consultations. Costs were attached to this resource use using the NHS reference costs, ${ }^{22}$ NHS prescription cost analysis ${ }^{23}$ and Personal Social Services Research Unit (PSSRU) unit costs for primary care ${ }^{24}$ datasets. All costs were calculated from a health systems perspective and based on the price year 2011/2012. Panel data models were used to estimate patient costs adjusted for the prognostic factors used in the model, as well as for the key CVD events in the model. This allowed us to attach costs to model states adjusted for baseline patient characteristics and event history.

## Health-related quality of life

HRQoL estimates were not available from the CALIBER dataset. Instead a catalogue of EQ-5D scores for the UK ${ }^{25}$ was used to calculate age-specific, condition-specific and eventspecific HRQoL. These were attached to states in the model to calculate patient-specific estimates of remaining lifetime QALYs.

## Analysis

Given that the model was designed to be used with a heterogeneous population, results were produced stratified by risk group. The 5 year baseline risk of experiencing at least one CVD event for each patients with stable-CAD in the CALIBER dataset was predicted based on the estimated risk equations given the patient's baseline covariate values as input parameters. The baseline values were those from the prognostic factors used in the risk equations measured at the point that the patient entered into the stable-CAD cohort. Patients were ranked by risk predictions and grouped into 10 equally sized risk groups. Model results were calculated at the mean baseline covariate value across patients within each risk group. In addition, estimates were predicted for a representative patient within each of the 10 risk groups demonstrating both the population-level and patientlevel results produced by the model. The model was evaluated probabilistically by means of a Monte Carlo simulation run for 1000 iterations in order to incorporate and characterise the uncertainty in the model inputs. ${ }^{26}$

The model was used to calculate life expectancy, QALYs, total healthcare costs and CVD-specific healthcare costs for standard care, as well as for indicative new treatments assumed to reduce CVD risks by $10 \%, 20 \%, 30 \%$ and $40 \%$. The indicative treatments were assumed to have constant costs and treatment effects, no direct effect on the risk of non-CVD mortality and no side-effects. When interpreting the results of this analysis it should be recognised that these assumptions may not hold in practice. The results were used to estimate the maximum price that could be charged for the new treatments in each of the risk groups assuming a range of cost-effectiveness thresholds between $£ 10000$ and $£ 40000$ per QALY. National Institute for Health and Care Excellence (NICE) employ a threshold ranging between $£ 20000$ and $£ 30000$ per QALY ${ }^{18}$ for considering an intervention cost-effective in England, and recent empirical evidence provides a central estimate of the threshold in England of approximately $£ 13000$ per QALY. ${ }^{27}$

Further details about the (a) patients with stable-CAD in the CALIBER dataset, (b) the economic model, (c) the estimation of costs and transition probabilities for use in the model, (d) the risk equations used to estimate model transition probabilities, (e) patient profiles for the 10 representative patients and (f) extended tables of results can be found in the accompanying online supplementary material appendices. The full model source code detailing all calculations performed in the model, including the model input parameters for the 10 risk groups and 10 representative patients as well as detailed instructions on how to run the model, are available from: https://github.com/ miqdadasaria/caliber-scad-model.

## RESULTS

The average baseline patient covariates by risk group are shown in table 1. For the cohort, the mean age at cohort entry was 67 years for males and 72 years for females. Stable angina (47\%) was the most frequent stable-CAD subgroup and STEMI (7\%) the least. One in 10 patients had received PCI within the previous 6 months, over a quarter had heart failure, nearly one in five had depression at the time of stable-CAD diagnosis and one in six had atrial fibrillation.

There was large variation in CVD risk between the lowest and highest risk groups, with an absolute difference in 5 -year risk between the lowest and highest risk group of $40.7 \%$. The risk of clinical events positively correlated with age, higher levels of CVD risk factors (such as hypertension and diabetes) and higher prevalence of CVD comorbidities. There were no obvious trends in the key modifiable CVD risk factors such as the lipid profile.

The modelled progression of CVD over time by risk group is shown in figure 2. Higher risk groups were predicted to have much higher levels of CVD mortality compared with lower risk groups, whereas the latter were predicted to remain event free for a much longer period and were more likely to die of non-CVD-related causes.

Summary model results by risk group are shown in table 2. The risk of all non-fatal events increased with overall CVD risk, and the risk of non-CVD mortality declined with overall CVD risk. Lower risk patients were estimated to have greater remaining life expectancy, QALYs and healthcare costs. For low risk patients ( 5 -year CVD risk 3.5\%), the remaining expected discounted lifetime healthcare costs were $£ 62210$, and patients had 12.0 expected discounted QALYs remaining. For the highest risk group ( 5 -year CVD risk $44.2 \%$ ), the remaining expected discounted lifetime healthcare costs were $£ 35549$, and patients had 2.8 remaining expected discounted QALYs.

Figure 3 shows the maximum price that the health system should be willing to pay for new treatments targeted at each risk
Table 2 Model results by risk group

| Risk group (95\% CI) | Lowest risk | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Highest risk |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model results split by 5 -year risk of composite CVD event |  |  |  |  |  |  |  |  |  |  |
| Life years | 26.81 (26.63 to 26.98) | 19.62 (19.48 to 19.80) | 17.34 (17.18 to 17.53) | 15.63 (15.47 to 15.84) | 14.26 (14.08 to 14.49) | 13.03 (12.83 to 13.28) | 11.92 (11.69 to 12.21) | 10.48 (10.21 to 10.84) | 8.52 (8.19 to 8.94) | 5.51 (5.09 to 6.02) |
| Discounted life years* | 16.77 (16.69 to 16.85) | 13.66 (13.58 to 13.75) | 12.5 (12.41 to 12.61) | 11.56 (11.46 to 11.68) | 10.76 (10.65 to 10.89) | 9.99 (9.87 to 10.15) | 9.26 (9.11 to 9.44) | 8.27 (8.10 to 8.50) | 6.90 (6.67 to 7.17) | 4.67 (4.38 to 5.01) |
| QALYs | 19.11 (18.06 to 19.93) | 13.97 (13.26 to 14.54) | 12.29 (11.66 to 12.80) | 11.01 (10.45 to 11.48) | 9.97 (9.44 to 10.41) | 9.03 (8.53 to 9.45) | 8.13 (7.65 to 8.53) | 6.99 (6.54 to 7.40) | 5.50 (5.09 to 5.89) | 3.34 (3.01 to 3.72) |
| Discounted QALYs* | 12.04 (11.45 to 12.53) | 9.77 (9.31 to 10.17) | 8.9 (8.47 to 9.25) | 8.18 (7.78 to 8.51) | 7.55 (7.17 to 7.87) | 6.95 (6.58 to 7.25) | 6.34 (5.98 to 6.63) | 5.55 (5.21 to 5.84) | 4.47 (4.16 to 4.76) | 2.85 (2.60 to 3.13) |
| Total costs (£,1000s) | 117 (65 to 168) | 81 (55 to 108) | 73 (54 to 92) | 68 (54 to 83) | 65 (53 to 76) | 62 (54 to 71) | 61 (55 to 69) | 59 (54 to 65) | 54 (49 to 60) | 43 (38 to 49) |
| Discounted total costs ( $£, 1000 \mathrm{~s})^{*}$ | 62 (34 to 90) | 51 (34 to 67) | 48 (36 to 60) | 47 (37 to 56) | 45 (38 to 53) | 45 (39 to 51) | 45 (41 to 50) | 45 (41 to 49) | 42 (39 to 46) | 36 (32 to 40) |
| CVD costs ( $£, 1000 \mathrm{~s}$ ) | 72 (29 to 114) | 52 (30 to 74) | 48 (31 to 64) | 45 (33 to 58) | 43 (34 to 53) | 42 (35 to 50) | 42 (36 to 48) | 41 (37 to 46) | 38 (34 to 43) | 31 (27 to 35) |
| Discounted CVD costs ( $£, 1000 \mathrm{~s})^{*}$ | 38 (15 to 60) | 32 (19 to 46) | 31 (21 to 41) | 31 (23 to 39) | 31 (24 to 37) | 31 (26 to 36) | 31 (27 to 35) | 31 (28 to 34) | 30 (27 to 33) | 26 (23 to 29) |
| Time to first event (years) | 24.55 (24.31 to 24.76) | 17.80 (17.64 to 17.95) | 15.62 (15.47 to 15.75) | 13.98 (13.85 to 14.11) | 12.67 (12.54 to 12.8) | 11.49 (11.36 to 11.62) | 10.43 (10.29 to 10.57) | 9.00 (8.85 to 9.15) | 7.06 (6.91 to 7.22) | 4.07 (3.90 to 4.23) |
| Ml as primary endpoint (\%) | 6.00 (5.55 to 6.49) | 7.11 (6.73 to 7.49) | 8.06 (7.72 to 8.43) | 8.94 (8.61 to 9.29) | 9.84 (9.50 to 10.15) | 10.70 (10.39 to 11.01) | 11.59 (11.28 to 11.90) | 12.33 (12.01 to 12.64) | 12.89 (12.57 to 13.22) | 14.3 (13.87 to 14.73) |
| Ischaemic stroke as primary endpoint (\%) | 5.51 (5.01 to 6.06) | 5.70 (5.34 to 6.11) | 6.06 (5.73 to 6.43) | 6.39 (6.07 to 6.74) | 6.80 (6.48 to 7.11) | 7.37 (7.05 to 7.68) | 8.29 (7.95 to 8.63) | 9.31 (8.96 to 9.68) | 10.07 (9.72 to 10.43) | 9.97 (9.58 to 10.38) |
| Haemorrhagic stroke as primary endpoint (\%) | 0.67 (0.48 to 0.89) | 0.67 (0.54 to 0.81) | 0.71 (0.59 to 0.82) | 0.72 (0.62 to 0.84) | 0.74 (0.65 to 0.84$)$ | 0.76 (0.67 to 0.86) | 0.79 (0.70 to 0.89) | 0.78 (0.69 to 0.88) | 0.7 (0.61 to 0.81) | 0.48 (0.40 to 0.57) |
| CVD mortality (\%) | 4.48 (3.45 to 5.55) | 6.60 (5.45 to 7.51) | 8.52 (7.22 to 9.47) | 10.39 (8.97 to 11.44) | 12.63 (11.07 to 13.85) | 15.48 (13.78 to 17.07) | 20.17 (18.17 to 22.63) | 26.29 (23.61 to 30.18) | 34.46 (30.65 to 39.32) | 45.95 (41.34 to 50.07) |
| Non-CVD mortality (\%) | 95.46 (94.40 to 96.49) | 93.40 (92.49 to 94.55) | 91.48 (90.53 to 92.78) | 89.60 (88.56 to 91.03) | 87.37 (86.15 to 88.93) | 84.52 (82.93 to 86.22) | 79.83 (77.37 to 81.83) | 73.71 (69.82 to 76.39) | 65.54 (60.68 to 69.35) | 54.05 (49.93 to 58.66) |

CVD, cardiovascular disease; MI, myocardial infarction; QALYs, quality-adjusted life years.


Figure 3 Maximum annual price for therapies as a function of baseline 5 -year CVD event risk. Each plot within the panel shows the results at a given cost-effectiveness threshold ranging from $£ 10000$ to $£ 40000$ per QALY. The lines within the plots represent the different efficacies of our modelled treatments having hazard reductions on CVD endpoints associated with them ranging from $10 \%$ to $40 \%$. CVD, cardiovascular disease; MI , myocardial infarction; QALYs, quality-adjusted life years.
group that reduce CVD hazards by between $10 \%$ and $40 \%$. This maximum price increased with both increasing baseline risk and with larger treatment effects in terms of proportionate risk reduction.

More detailed breakdowns of these results as well as results presented for the representative patients drawn from each risk group can be found in online supplementary appendix (f).

## DISCUSSION

We report the first comprehensive lifetime model of stable-CAD based on long-term EHR data. The model encompasses a full range of CVD endpoints and accounts for the interdependence of CVD risks among patients with stable-CAD. The sample sizes, duration of follow-up and the large number of endpoints and risk factors captured by the multisource EHR dataset (CALIBER) provided the opportunity to build a model which more fully and accurately captured the biological and medical nuances of such a condition. In quantifying the expected costs, life expectancy and quality-adjusted life expectancy of patients with stable-CAD, this analysis provides a means to plan budgets and services for such patients in the NHS in particular, and in health systems in developed countries more generally.

We found that at NICE's lower bound cost-effectiveness threshold ( $£ 20000$ per QALY), a treatment aimed at the lowest risk patients ( 5 -year risk of $3.5 \%$ ), would be cost-effective with annual prices up to $£ 36, £ 72, £ 108$ or $£ 143$ if the treatment was able to reduce CVD risk by $10 \%, 20 \%, 30 \%$ and $40 \%$, respectively. For the highest risk patients (5-year risk of 44.2\%),
the respective maximum prices would be $£ 325, £ 645, £ 961$ or $£ 1269$. For comparison, statins commonly used by these patients reduce CVD risk by approximately a third ${ }^{28}$ and cost $£ 16$ per patient per year, ${ }^{29}$ whereas the annual cost of new antiplatelet agents can be up to $£ 712$ per patient per year. ${ }^{29}$ These estimates provide a basis for developers of new medications and health technologies for stable-CAD to define necessary effect sizes that they will need to demonstrate to be considered value for money by health systems.

In this study it has been shown that using EHR data, in combination with an analytical model such as that used by NICE in the English NHS, provides a powerful framework within which to assess the cost-effectiveness of new technologies. In the many healthcare systems with constrained budgets, cost-effectiveness analysis provides a means of comparing the additional health benefits from a new intervention with the health other patients forgo because expenditure on other types of treatments is necessarily curtailed in order to finance the new intervention (opportunity costs). ${ }^{30}$ The current analysis uses this approach as a basis for identifying the minimum treatment effect a new intervention for stable-CAD will have to achieve at a given price (or the maximum price for a given treatment effect) and cost-effectiveness threshold. These necessary treatment effects and prices will inevitably vary according to patients' underlying risk of CVD events.

There are very few comparable studies that focus on modelling the costs and health effects over the lifetime of patients with stable-CAD. Studies that we are aware of in this area ${ }^{13}$ are typically based on short-term trial data, model only a subset of
the relevant CVD endpoints and make predictions over short time horizons. Models suitable for the economic evaluation of health technologies in disease areas such as CVD where there are substantial mortality impacts need to estimate all relevant healthcare costs and health outcomes over the remaining lifetimes of patients. This is why in our study, despite having 10 years of follow-up data, we still required a model to extrapolate up to a maximum of 60 years beyond our data to estimate total lifetime costs and consequences for the full cohort of modelled patients. Limitations of our study are that HRQoL data were not recorded in the CALIBER dataset and so had to be drawn from external studies; that changes in prognostic risk factors over time were not explicitly modelled; instead the equations underpinning our model were informed by the baseline values of these risk factors; the dataset we used did not contain left ventricular ejection fraction which is an important prognostic factor in this patient population; and that the long follow-up period of our dataset may mean that the modelled risk equations may not fully reflect contemporary risk levels in the population. Additionally a number of structural assumptions had to be made for modelling purposes and these are detailed in online supplementary appendix (b).

The model we have produced allows policy makers to quantify and understand both the health and the cost burden of stable-CAD and serves as a basis for evaluating the costeffectiveness of new treatments targeted at reducing CVD risk in this population. Our results suggest that, for the vast majority of patients with stable-CAD, it is likely that low cost interventions to improve adherence to existing secondary prevention drugs should be prioritised over high cost new treatments. It is also notable from our results that, even among the groups with the highest CVD risk, more patients are predicted to die of non-CVD-related causes than of CVD-related causes. This highlights the vital role of primary care in the holistic management of both CVD and non-CVD risk for these patients.

## Key messages

## What is already known on this subject?

- Electronic health records have been shown to be useful in prognosis, but thus far their use in decision analytic models and cost-effectiveness analysis has been limited.
- The recent improvement in acute coronary syndrome survivorship means that a growing number of people are living with cardiovascular disease.


## What might this study add?

- This study provides the first lifetime model of the costs and health effects of patients with stable coronary artery disease based on long-term linked electronic health records, predicting key cardiovascular endpoints for these patients and capturing the interdependence of these endpoints.


## How might this impact on clinical practice?

- This model can be used to evaluate and to target appropriately new treatments as they emerge for this patient population as well as to inform commissioning, pricing and reimbursement decisions.

Acknowledgements The authors would like to acknowledge the following people for help in understanding the CALIBER dataset and prognostic models: Eleni Rapsomaniki, Pablo Perel, Spiros Denaxas, Katja Grasic, Julie George, Owen

Nicholas, Ruzan Udumyan, Gene Feder, Aroon Hingorani, Spiros Denaxas, Julie George, Emily Herrett, Dipak Kalra, Aroon Hingorani, Mike Kivimaki and Liam Smeeth. This work made use of the facilities of N8 HPC provided and funded by the N8 consortium and EPSRC (Grant No. EP/K000225/1). The Centre is coordinated by the Universities of Leeds and Manchester.
Contributors MA conducted the main data analysis and drafted and revised the paper and is the guarantor of the study. SW, SP and MS advised on health economic issues and helped to design the model. ADS, CPG, AT and HH advised on clinical issues. KRA, MC and AM advised on statistical issues. AT and HH were responsible for the overall grant from the NIHR. All authors commented on drafts of the paper. All authors, external and internal, had full access to all of the data (including statistical reports and tables) in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. MA affirms that the manuscript is an honest, accurate and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.
Funding The study was funded by the UK National Institute for Health Research (NIHR) (RP-PG-0407-10314) and the Wellcome Trust (WT 086091/Z/08/Z) and was supported by the Farr Institute of Health Informatics Research, funded by The Medical Research Council (K006584/1) in partnership with Arthritis Research UK, the British Heart Foundation, Cancer Research UK, the Economic and Social Research Council, the Engineering and Physical Sciences Research Council, the NIHR, the National Institute for Social Care and Health Research (Welsh Assembly Government), the Chief Scientist Office (Scottish Government Health Directorates) and the Wellcome Trust. CPG is funded by the National Institute for Health Research (NIHR-CTF-2014-03-03) as associate professor and honorary consultant cardiologist. MC is partly funded by a National Institute for Health Research Doctoral Fellowship (DRF-2012-05-409). ADS is funded by a Wellcome Trust Clinical Research Training Fellowship (093830/Z/10/Z). KRA and MS are partially supported by the National Institute for Health Research as senior investigators (NF-SI-0512-10159 and NF-SI-0513-10060, respectively). The funding bodies did not play any role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The views expressed in this publication are those of the authors.

Competing interests All authors have completed the Unified Competing Interests form at http://www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare that MA, SW, SP, CPG, ADS, MC and HH have nothing to disclose. AM reports and currently sits on one of the NICE Technology Appraisal Committees. MS received grant funding for the work reported in this paper from the National Institute for Health Research. Outside of the published work, he has received personal fees from various pharmaceutical and medical device companies some of which have products used in cardiovascular disease. AT reports personal fees from Menarini Pharmaceuticals, other from Servier, outside the submitted work. KRA reports personal fees from ABPI, Roche, Novo Nordisk, AstraZeneca, Janssen, Allergan, outside the submitted work.
Provenance and peer review Not commissioned; externally peer reviewed.
Data sharing statement An extensive supplementary appendix with additional analyses has been submitted alongside the paper and the model source code and instructions on how to use it to reproduce the results in the paper are available at https://github.com/miqdadasaria/caliber-scad-model.
Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/ licenses/by/4.0/

## REFERENCES

1 Office for National Statistics. Statistical Bulletin-Deaths Registered in England and Wales (Series DR), 2013. http://www.ons.gov.uk/ons/rel/vsob1/mortality-statistics-deaths-registered-in-england-and-wales-series-dr-/2013/stb-deaths-registered-in-england-and-wales-in-2013-by-cause.htm (accessed 1 Feb 2016).
2 Chung SC, Gedeborg R, Nicholas O, et al. Acute myocardial infarction: a comparison of short-term survival in national outcome registries in Sweden and the UK. Lancet 2014;383:1305-12.
3 Luengo-Fernández R, Leal J, Gray A, et al. Cost of cardiovascular diseases in the United Kingdom. Heart 2006;92:1384-9.
4 Gale CP, Cattle BA, Woolston A, et al. Resolving inequalities in care? Reduced mortality in the elderly after acute coronary syndromes. The Myocardial Ischaemia National Audit Project 2003-2010. Eur Heart J 2012;33:630-9.
5 Hemingway H, Croft P, Perel P, et al. Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes. BMJ 2013;346:e5595.
6 Riley RD, Hayden JA, Steyerberg EW, et al. Prognosis Research Strategy (PROGRESS) 2: Prognostic Factor Research. PLoS Med 2013;10:e1001380.

7 Wierzbicki AS, Hardman TC, Viljoen A. New lipid-lowering drugs: an update. Int J Clin Pract 2012;66:270-80.
8 Bonaca MP, Bhatt DL, Braunwald E, et al. Design and rationale for the prevention of cardiovascular events in patients with prior heart attack using ticagrelor compared to placebo on a background of aspirin-thrombolysis in myocardial infarction 54 (PEGASUS-TIMI 54) trial. Am Heart J 2014;167:437-44.e5.
9 Lewsey JD, Lawson KD, Ford I, et al. A cardiovascular disease policy model that predicts life expectancy taking into account socioeconomic deprivation. Heart 2015;101:201-8.
10 Unal B, Capewell S, Critchley JA. Coronary heart disease policy models: a systematic review. BMC Public Health 2006;6:213.
11 Barton P, Andronis L, Briggs A, et al. Effectiveness and cost effectiveness of cardiovascular disease prevention in whole populations: modelling study. BMJ 2011;343:d4044.
12 Pujades-Rodriguez M, Timmis A, Stogiannis D, et al. Socioeconomic deprivation and the incidence of 12 cardiovascular diseases in 1.9 million women and men: implications for risk prediction and prevention. PLoS ONE 2014;9:e104671.
13 Briggs A, Mihaylova B, Sculpher M, et al. Cost effectiveness of perindopril in reducing cardiovascular events in patients with stable coronary artery disease using data from the EUROPA study. Heart 2007;93:1081-6.
14 Denaxas SC, George J, Herrett E, et al. Data resource profile: cardiovascular disease research using linked bespoke studies and electronic health records (CALIBER). Int J Epidemiol 2012;41:1625-38.
15 Pujades-Rodriguez M, George J, Shah AD, et al. Heterogeneous associations between smoking and a wide range of initial presentations of cardiovascular disease in 1937360 people in England: lifetime risks and implications for risk prediction. Int J Epidemiol 2015;44:129-41.
16 Rapsomaniki E, Timmis A, George J, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet 2014;383:1899-911.
17 Shah AD, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol 2014;3:105-13.

18 National Institute for Health and Care Excellence. Guide to the methods of technology appraisal 2013. https://www.nice.org.uk/article/pmg9/resources/non-guidance-guide-to-the-methods-of-technology-appraisal-2013-pdf (accessed 1 Feb 2016).

19 Rapsomaniki E, Shah A, Perel P, et al. Prognostic models for stable coronary artery disease based on electronic health record cohort of 102023 patients. Eur Heart J 2014;35:844-52.
20 ONS. Mortality Statistics: Deaths Registered in 2012 (Series DR) Table 5. 2013. http://www.ons.gov.uk/ons/rel/vsob1/mortality-statistics-deaths-registered-in-england-and-wales-series-dr-/2012/dr-table5-2012.xls (accessed 1 Feb 2016).
21 Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med 2007;26:2389-430.
22 Department of Health. NHS reference costs: financial year 2011 to 2012. https:// www.gov.uk/government/publications/nhs-reference-costs-financial-year-2011-to2012 (accessed 1 Feb 2016).
23 Health and Social Care Information Centre. Prescription Cost Analysis-England, 2012. http://www.hscic.gov.uk/catalogue/PUB10610 (accessed 1 Feb 2016).

24 Curtis L. Unit Costs of Health and Social Care 2012. http://www.pssru.ac.uk/project-pages/unit-costs/2012/index.php?file=full (accessed 1 Feb 2016).
25 Sullivan PW, Slejko JF, Sculpher MJ, et al. Catalogue of EQ-5D scores for the United Kingdom. Med Decis Making 2011;31:800-4.
26 Briggs AH, Claxton K, Sculpher MJ. Decision modelling for health economic evaluation. Oxford University Press, 2006.
27 Claxton K, Martin S, Soares M, et al. Methods for the estimation of The National Institute for Health and Care Excellence cost-effectiveness threshold. Health Technol Assess (Rockv) 2015;19:1-504.
28 Wei L, Ebrahim S, Bartlett C, et al. Statin use in the secondary prevention of coronary heart disease in primary care: cohort study and comparison of inclusion and outcome with patients in randomised trials. BMJ 2005;330:821.
29 Joint Formulary Committee. British National Formulary (online). BMJ Gr. Pharm. Press, 2014. http://www.medicinescomplete.com
30 McCabe C, Claxton K, Culyer AJ. The NICE cost-effectiveness threshold: what it is and what that means. Pharmacoeconomics 2008;26:733-44.

## Modelling lifetime costs and health outcomes for patients with stable coronary artery disease

Appendix A: CALIBER dataset

Patient population consists of patients with stable coronary artery disease (SCAD) in our linked dataset who have had no event in the 180 days post SCAD diagnosis. This is a total of 94,966 patients observed between January 2001 and March 2010. This comprises 12,839 patients with unstable angina as their index event, 6,276 patients with STEMI as their index event, 9,304 patients with NSTEMI as their index event, 45,038 patients with stable angina and 21,509 patients with other CHD diagnoses. Median follow up for these patients was 4.2 (IQR 1.9 to 6.9) years though patients were censored from the dataset throughout the 10 year follow up period as described in the figure.


Reasons for leaving the dataset were either death (16,783 of which 6,800 were from cardiovascular causes) or administrative censoring both during $(16,790)$ and at the end of $(61,393)$ the period of observation. Administrative censoring during the period of observation was due to patients moving away from a primary care practice that contribute data to the CPRD dataset.

Not all patients entered the cohort at the start of the study in 2001, rather patients entered the cohort once they had experienced a qualifying event during the study period. We counted events and the time from cohort entry to experience each event at the patient level. Where multiple records for a death were recorded in the datasets constituting CALIBER the earliest date attributed to the death was attributed as the patient's date of death. For other events repeated recordings of the same event within a 30 day window were considered to be records for the same event and the earliest recorded event date was attributed to that event for the patient.


We looked at primary endpoints of type myocardial infarction $(4,719)$, ischaemic stroke $(3,222)$, haemorrhagic stroke $(262)$, death from cardiovascular causes $(5,536)$ and death from noncardiovascular causes $(8,663)$ as first events experienced subsequent to cohort entry. The validation study by Herrett E, Shah A. D, Boggon R, et al. (Completeness and diagnostic validity of recording acute myocardial infarction events in primary care, hospital care, disease registry, and national mortality records: cohort study. BMJ 2013 http://www.ncbi.nlm.nih.gov/pubmed/23692896) demonstrates the importance of using information from the multiple sources across the linked EHR datasets to determine the occurrence of events, we follow this recommendation with our events being defined using the CPRD, HES, ONS and MINAP codes described on the CALIBER data portal: https://www.caliberresearch.org/portal.

The distributions of times to primary endpoints measured in the time from entry into the cohort are shown in the figures below.


We also looked at deaths from CVD and non-CVD causes following a non-fatal primary endpoint. After an MI we observe 813 CVD deaths and 760 non-CVD deaths, after ischaemic stroke we observe 410 CVD deaths and 525 non-CVD deaths and after haemorrhagic stroke we observe 41 CVD deaths and 35 non-CVD deaths in the CALIBER dataset.

Multiple imputation was used to handle missing covariate values in the CALIBER dataset that was used in estimating the models. Full details about the imputation model used can be found in this technical appendix:
http://eurheartj.oxfordjournals.org/content/ehj/suppl/2013/12/01/eht533.DC1/eht533supp1.pdf

Our study protocol was submitted to CPRD and approved by the Independent Scientific Advisory Committee (ISAC) on the $4^{\text {th }}$ December 2012. Protocol title "Cost effectiveness analyses of treatments for patients with chronic stable angina", protocol number 12_132R.

## Modelling lifetime costs and health outcomes for patients with stable coronary artery disease

## Appendix B: CALIBER economic model

A Markov state transition model was constructed to model the pathway of stable coronary artery disease (SCAD) patients. The model captured the primary endpoints of first MI, ischaemic stroke, haemorragic stroke. fatal CVD event and non-fatal CVD events after the cohort entry date as well as any subsequent CVD or non-CVD mortality. All patients start the model in the SCAD state and progress through the model until they die of either CVD related or non-CVD related causes. While only first occurrences of non-fatal CVD events are explicitly modelled, further non-fatal events are implicitly captured in the time varying risk, cost and HRQoL estimates used in the model.


The eleven risk equations corresponding to the model transitions were estimated using flexible parametric survival models. The detail of these estimated risk equations is provided in supplementary appendix (d). These risk equations were combined in a competing risks framework to account for the interdependence of the modelled events following the methods outlined in Putter et al (2007) [Tutorial in biostatistics: Competing risks and multi-state model in Statistics in Medicine 26:2389-2430]. This was used to estimate cumulative incidences of the transitions modelled which in turn was used to compute the transition probabilities in the Markov model.

Given that the risk equations for these events captured the time varying nature of the hazards (i.e. did not display constant hazards) we modelled the non-fatal primary endpoints as tunnel states. We
implemented our model with a 90 day cycle length and attached costs and utilities to the states in the model. The 90 day cycle length we felt gave a good trade-off between capturing the time varying hazards and the granularity of resource use captured.

The non-linear nature of our model meant that we needed to run it probabilistically and average over the results to capture the uncertainty in the model input parameters appropriately. We ran the model for 1,000 iterations for each patient profile and treatment scenario combination. For each simulation of the model the coefficients in the risk-equations, cost equations and HRQL equations were resampled and model results were computed. The average across these simulated results comprise the central estimate for each patient profile and treatment combination with the variance in these simulated results providing the confidence intervals around these results.

A number of assumptions were made in the modelling process these include:
(a) Only first events were explicitly modelled with recurrent event implicitly captured in the time varying nature of costs and risks following events
(b) We assume current estimates of event rates are valid as predictions of future event rates
(c) For simulation in the PSA we assign a multivariate normal distribution to the costs and beta and gamma distributions to the constant level and event specific decrements in HRQL respectively.
(d) The following parametric models were assigned to the risk equations to extrapolate them and multivariate normal distributions were used to simulate the coefficients from these equations in the PSA

| Risk Equation | Parametric Model |
| :--- | :--- |
| Equation 1: Stable-CAD to MI | Weibull |
| Equation 2: Stable-CAD to Stroke I | Weibull |
| Equation 3: Stable-CAD to Stroke H | Exponential |
| Equation 4: Stable-CAD to Fatal CVD | Weibull |
| Equation 5: Stable-CAD to Fatal non-CVD | Weibull |
| Equation 6: MI to Fatal CVD | Log Normal |
| Equation 7: MI to Fatal non-CVD | Generalised Gamma |
| Equation 8: Stroke I to Fatal CVD | Generalised Gamma |
| Equation 9: Stroke I to Fatal non-CVD | Generalised Gamma |
| Equation 10: Stroke H to Fatal CVD | Log Normal |
| Equation 11: Stroke H to Fatal non-CVD | Weibull |

The model was run for a range of different patient and population profiles and a range of indicative treatment effects. To handle the computational burden involved the N 8 supercomputer was used to run all iterations and scenarios in parallel.

The full model code in R along with UNIX shell scripts to run the model in parallel on a sun grid engine supercomputer is available at: https://github.com/miqdadasaria/caliber-scad-model

To run the model for a new patient / population profile the following patient characteristics must be defined in a csv file, with one patient per row and headings following the variable name column:

| Variable Name | Variable Description | Example <br> Value <br> Individual | Example <br> Value <br> Population |
| :---: | :---: | :---: | :---: |
| Sex | Female=1, Male=0 | 1 | 0.398146 |
| IMD5 | Whether person lives in most deprived fifth of LSOAs | TRUE | 0.190781 |
| dx7CHD | SCAD index event other CHD | FALSE | 0 |
| dx7NSTEMI | SCAD index event NSTEMI | TRUE | 0.641551 |
| dx7STEMI | SCAD index event STEMI | FALSE | 0.358449 |
| dx7UA | SCAD index event Unstable Angina | FALSE | 0 |
| earlyPCI | PCl in last 6 months | TRUE | 0.231131 |
| earlyCABG | CABG in last 6 months | FALSE | 0.064769 |
| recurrent_mi | Previous/recurrent MI | TRUE | 0.267824 |
| nitrates_long | Use of Nitrates |  | 0.270175 |
| Smcatcurrent | Current Smoker | FALSE | 0.279943 |
| Smcatex | Ex-Smoker | FALSE | 0.354583 |
| Hypertension | Hypertension | TRUE | 0.680935 |
| Diabetes | Diabetes | TRUE | 0.220554 |
| hist_hf | History of Heart failure | FALSE | 0.279316 |
| hist_pad | History of Peripheral arterial disease | TRUE | 0.107208 |
| hist_af | History of Atrial fibrillation | FALSE | 0.196657 |
| hist_stroke | History of Stroke | FALSE | 0 |
| hist_renal | History of Chronic kidney disease | FALSE | 0.10982 |
| hist_copd | History of Chronic obstructive pulmonary disease | FALSE | 0.235962 |
| hist_cancer | History of Cancer | TRUE | 0.112562 |


| hist_liver | History of Chronic liver disease | FALSE | 0.010969 |
| :--- | :--- | :--- | ---: |
| Depression | Depression at diagnosis | TRUE | 0.141029 |
| hist_anxiety | Anxiety at diagnosis | FALSE | 0.073257 |
| age0_ori | Age | 70 | 75.1106 |
| pulse_rate_ori | Heart rate (b.p.m.) | 75 | 70.00349 |
| HDL_ori | HDL (mmol/L) | 1.4 | 1.32259 |
| TCHOL_ori | Total cholesterol (mmol/L) | 4.8 | 4.218232 |
| CREAT_ori | Creatinine (mmol/L) | 90 | 105.7011 |
| WCC_ori | White cell count (109/L) | 7 | 7.638091 |
| HGB_ori | Haemoglobin (g/100ml) | 14 | 13.27026 |
|  | Average age difference between men and <br> women in population | NA |  |
| sex:age0 |  |  | 3.239488 |

Where all the SCAD index events are set to false the index event is taken to be stable angina, where all the smoking status variables are set to false the smoking status is taken to be never smoked. Population level values for these sets of grouped variables including the excluded category must sum to 1 .

The model is then run by calling: "RScript run_model. $R<$ patient $><$ iteration $>$ manual $<$ path to csv file>" from the command line.

Where <patient> indicates the patient profile to select from the csv file starting from 1, <iteration> represents the PSA iteration that you want the model to run for ranging between 1 and 10,000 (this will reference pre-computed realisations from the underlying input parameter distributions), manual indicates that you want to provide patient information using a csv file other options here are deciles and clinical to load up the patient profiles used to generate the results in the paper, finally <path to csv file $>$ indicates the path from the working directory to the file where the patient profiles have been saved.

# Modelling lifetime costs and health outcomes for patients with stable coronary artery disease 

Appendix C: Cost and Health Related Quality of Life Input Parameters

Panel data methods with time invariant covariates were used to estimate patient costs over each 90 day period. The costs for each individual in the CALIBER data set were calculated and partitioned into equal time periods, with the length of each period matching the 90 days cycle length of the model, to create a longitudinal data set of costs. Panel data estimates based on linear regression were then applied to estimate the costs for use in the model. Using these methods both an underlying background cost as well as an event specific cost for the events (captured using a dummy variable in the time period in which the event occurred) were calculated. Costs were adjusted based on important patient risk factors and comorbidities to allow for the appropriate capturing of heterogeneity within the model. Aggregate costs were also estimated using the generalised linear model using a log link function to compare with the results generated from the linear model. Both methods gave similar results reassuring us that the linear model was appropriate to use for estimating costs for use in the model.

Mean costs were used in the model along with the cholesky decomposition of the estimated variance covariance matrix from the regression for use in the probabilistic sensitivity analysis.

Costs were assumed to follow a beta distribution.Costs were allocated to states in the model and adjusted for baseline co-variates as well as for patient age and time elapsed since previous non-fatal CVD event.

HRQL estimates were taken from the Sullivan et al (2011) catalogue. The uncertainty around the HRQL was inferred from the standard errors reported in the catalogue and was assumed to follow a gamma distribution.

As with costs the HRQL values were attached to model states and adjusted for baseline patient covariates and updated for patient age as patients progressed through the model.




|  | fatalCVD | fatalNONCVD | firsteventM1 | Mldiabetes |  | firsteventM12 | Mldiabetes2 | firsteventM13 | MIdiabetes3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fatalcvo |  | 21.298 |  |  |  |  |  |  |  |
| fatalnoncVd |  | 0.142 | 17.279 |  |  |  |  |  |  |
| firsteventM1 |  | 0.110 | 0.097 | 29.547 |  |  |  |  |  |
| Mldiabetes |  | 0.020 | 0.039 | -29.515 | 57.965 |  |  |  |  |
| firsteventM12 |  | -0.513 | -0.353 | 2.720 | 0.016 | 31.513 |  |  |  |
| Mldiabetes2 |  | -0.138 | -0.044 | -2.686 | 5.659 | -31.484 | 62.225 |  |  |
| firsteventM13 |  | -0.231 | -0.125 | 2.722 | 0.017 | 2.654 | 0.015 | 33.415 |  |
| Mldiabetes3 |  | -0.081 | -0.288 | -2.685 | 5.648 | -2.621 | 5.508 | -33.386 | 66.266 |
| firsteventM14 |  | -0.204 | -0.109 | 2.743 | 0.019 | 2.675 | 0.016 | 2.613 | 0.015 |
| Mldiabetes4 |  | -0.283 | -0.045 | -2.703 | 5.611 | -2.639 | 5.472 | -2.581 | 5.343 |
| femı |  | -0.210 | -0.158 | 2.817 | 0.032 | 2.748 | 0.030 | 2.685 | 0.028 |
| feMIdiabetes |  | -0.110 | -0.100 | -2.751 | 5.577 | -2.686 | 5.434 | -2.626 | 5.304 |
| firsteventStroke_1 |  | 0.114 | 0.127 | 0.055 | 0.035 | 0.050 | 0.031 | 0.046 | 0.028 |
| firsteventStroke_12 |  | -0.367 | -0.425 | 0.059 | 0.036 | 0.054 | 0.033 | 0.050 | 0.030 |
| firsteventStroke_13 |  | -0.235 | -0.188 | 0.062 | 0.038 | 0.057 | 0.034 | 0.053 | 0.031 |
| firsteventStroke_14 |  | -0.184 | -0.199 | 0.065 | 0.039 | 0.061 | 0.036 | 0.057 | 0.033 |
| feSTROKE_I |  | -0.230 | -0.163 | 0.094 | 0.053 | 0.090 | 0.050 | 0.086 | 0.047 |
| firsteventStroke_H |  | 0.106 | 0.112 | 0.054 | 0.030 | 0.049 | 0.027 | 0.045 | 0.024 |
| firsteventStroke_H2 |  | -0.429 | -0.488 | 0.054 | 0.030 | 0.049 | 0.028 | 0.046 | 0.025 |
| firsteventStroke_H3 |  | -0.600 | -0.156 | 0.057 | 0.031 | 0.053 | 0.028 | 0.049 | 0.027 |
| firsteventStroke_H4 |  | 0.009 | -0.070 | 0.060 | 0.029 | 0.056 | 0.028 | 0.053 | 0.026 |
| feStroke_h |  | -0.261 | -0.126 | 0.090 | 0.042 | 0.086 | 0.041 | 0.082 | 0.039 |
| ageo |  | -0.010 | -0.011 | -0.002 | -0.001 | -0.002 | -0.001 | -0.001 | -0.001 |
| timeperiod |  | -0.004 | -0.007 | -0.004 | -0.002 | -0.004 | -0.002 | -0.004 | -0.002 |
| diabetes |  | -0.053 | -0.021 | 0.162 | -0.454 | 0.137 | -0.389 | 0.118 | -0.340 |
| hist_liver |  | -0.067 | -0.261 | -0.020 | -0.043 | 0.003 | -0.020 | -0.005 | -0.011 |
| hist_hf |  | -0.216 | -0.155 | -0.029 | -0.028 | -0.019 | -0.019 | -0.014 | -0.011 |
| hist_af |  | -0.079 | -0.054 | 0.005 | 0.012 | 0.003 | 0.006 | 0.008 | 0.007 |
| hist_pad |  | -0.116 | -0.078 | -0.065 | -0.053 | -0.053 | -0.037 | -0.044 | -0.036 |
| hist_copd |  | 0.002 | -0.091 | -0.019 | -0.007 | -0.017 | -0.007 | -0.011 | -0.004 |
| hist_cancer |  | 0.010 | -0.369 | -0.012 | 0.003 | -0.009 | 0.003 | -0.003 | 0.002 |
| hist_renal |  | -0.066 | -0.056 | -0.007 | -0.040 | -0.003 | -0.016 | 0.001 | -0.003 |
| sex |  | 0.057 | 0.051 | 0.033 | 0.013 | 0.028 | 0.009 | 0.025 | 0.009 |
| CHD |  | -0.029 | 0.034 | -0.039 | -0.011 | -0.034 | -0.010 | -0.032 | -0.009 |
| nstemi |  | -0.173 | -0.038 | -0.198 | -0.154 | -0.182 | -0.127 | -0.160 | -0.109 |
| STEMI |  | -0.025 | -0.001 | -0.143 | -0.051 | -0.133 | -0.046 | -0.122 | -0.043 |
| UA |  | -0.038 | -0.002 | -0.068 | -0.028 | -0.057 | -0.027 | -0.052 | -0.024 |
| _cons |  | -0.060 | -0.061 | -0.071 | 0.045 | -0.052 | 0.042 | -0.042 | 0.036 |
|  | firsteventM14 | MIdiabetes4 | femı | feMIdiabetes |  | firsteventStroke_1 | firsteventStroke_12 | firsteventStroke_13 | firsteventStroke_14 |
| firsteventM14 |  | 34.772 |  |  |  |  |  |  |  |
| Mldiabetes4 |  | -34.742 | 69.080 |  |  |  |  |  |  |
| feMI |  | 2.592 | 0.028 | 14.664 |  |  |  |  |  |
| feMldiabetes |  | -2.535 | 5.109 | -14.406 | 29.956 |  |  |  |  |
| firsteventStroke_1 |  | 0.044 | 0.027 | 0.174 | 0.093 | 30.944 |  |  |  |
| firsteventStroke_12 |  | 0.048 | 0.028 | 0.194 | 0.101 | 2.515 | 32.590 |  |  |
| firsteventStroke_13 |  | 0.052 | 0.030 | 0.213 | 0.109 | 2.504 | 2.438 | 35.117 |  |
| firsteventStroke_14 |  | 0.055 | 0.032 | 0.230 | 0.117 | 2.516 | 2.449 | 2.451 | 36.826 |
| festroke_I |  | 0.084 | 0.046 | 0.371 | 0.180 | 2.652 | 2.583 | 2.585 | 2.534 |
| firsteventStroke_H |  | 0.043 | 0.023 | 0.166 | 0.082 | 0.056 | 0.052 | 0.047 | 0.045 |
| firsteventStroke_H2 |  | 0.044 | 0.024 | 0.181 | 0.089 | 0.059 | 0.055 | 0.051 | 0.048 |
| firsteventStroke_H3 |  | 0.048 | 0.025 | 0.200 | 0.096 | 0.061 | 0.058 | 0.054 | 0.052 |
| firsteventStroke_H4 |  | 0.052 | 0.025 | 0.219 | 0.099 | 0.065 | 0.062 | 0.058 | 0.056 |
| feStroke_h |  | 0.081 | 0.039 | 0.358 | 0.160 | 0.097 | 0.094 | 0.089 | 0.087 |
| age0 |  | -0.001 | 0.000 | -0.002 | -0.001 | -0.004 | -0.003 | -0.002 | -0.002 |
| timeperiod |  | -0.004 | -0.002 | -0.020 | -0.009 | -0.004 | -0.005 | -0.005 | -0.005 |
| diabetes |  | 0.105 | -0.302 | 0.264 | -0.812 | -0.034 | -0.027 | -0.025 | -0.022 |
| hist_liver |  | -0.008 | 0.001 | 0.001 | -0.055 | -0.028 | -0.027 | -0.026 | -0.013 |
| hist_hf |  | -0.010 | -0.007 | -0.026 | -0.033 | -0.029 | -0.021 | -0.015 | -0.015 |
| hist_af |  | 0.007 | 0.007 | 0.015 | 0.026 | -0.061 | -0.048 | -0.036 | -0.030 |
| hist_pad |  | -0.039 | -0.030 | -0.085 | -0.056 | -0.037 | -0.036 | -0.029 | -0.028 |
| hist_copd |  | -0.011 | -0.004 | -0.030 | 0.002 | 0.003 | 0.004 | 0.000 | -0.001 |
| hist_cancer |  | -0.002 | 0.006 | -0.006 | 0.019 | 0.012 | 0.004 | 0.004 | 0.004 |
| hist_renal |  | 0.000 | -0.007 | -0.001 | -0.002 | 0.020 | 0.015 | 0.019 | 0.019 |
| sex |  | 0.022 | 0.007 | 0.068 | 0.028 | 0.007 | 0.005 | 0.005 | 0.004 |
| CHD |  | -0.029 | -0.009 | -0.068 | -0.022 | -0.002 | -0.004 | -0.003 | -0.003 |
| NSTEMI |  | -0.143 | -0.103 | -0.359 | -0.289 | -0.003 | -0.007 | -0.011 | -0.010 |
| Stemi |  | -0.111 | -0.036 | -0.270 | -0.107 | 0.008 | 0.008 | 0.009 | 0.007 |
| UA |  | -0.048 | -0.019 | -0.121 | -0.047 | -0.018 | -0.019 | -0.018 | -0.018 |
| _cons |  | -0.032 | 0.035 | 0.005 | 0.131 | -0.042 | -0.028 | -0.019 | -0.011 |



## CHD Specific Costs Mean Estimates

$643^{\text {firsteventM12 }}$

1166 | Mldiabetes2 |
| :--- |
| firsteventStroke_12 |

|  | firsteventM13 |  | MIdiabetes3 |
| :---: | :---: | :---: | :---: |
| 792 |  | 590 | 701 |
|  | firsteventStroke_13 |  | firsteventStroke_14 |
| 620 |  | 415 | 262 |


|  | fatalnoncvo |  | firsteventM1 |  | MIdiabetes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1407 |  | 1068 |  | 4658 |  |
|  | MIdiabetes4 |  | feMI |  | feMIdiabetes |
| 642 |  | 330 |  | 475 |  |
| firsteventStroke_H |  |  | firsteventStroke_H2 |  | firsteventStroke_H3 |
| 256 |  | 2874 |  | 790 |  |

firsteventMI4
$415 \quad$ timeperiod
269 firsteventStroke_I 30293029 620
251 ageo $\quad 4^{\text {timeperiod }}$${ }_{301}$ feSTROKE_H$84{ }^{\text {hist_pad }} \quad 161^{\text {hist_copd }}$hist_cancer$107^{\text {hist_renal }}$4
diabetes

| $1444^{\text {hist_liver }}$ | 198 |
| :--- | :--- |
| CHD | hist_hf |
| NSTEMI |  |

143 hist_af
STEMI
${ }^{\text {ST }}$
${ }_{111}$
$163{ }^{\text {-cons }}$

107
201
of Variance Covaria
fatalNONCVD
$17.056{ }^{\text {fat }}$

| fatalNONCVD | firsteventM |
| :--- | ---: |
| 17.056 | 13.843 |
| 0.116 | 0.079 |
| 0.088 | 0.031 |
| 0.017 | -0.281 |
| -0.411 | -0.035 |
| -0.109 | -0.098 |
| -0.184 | -0.230 |
| -0.064 | -0.085 |
| -0.161 | -0.035 |
| -0.225 | -0.124 |
| -0.165 | -0.079 |
| -0.088 | 0.103 |
| 0.092 | -0.340 |
| -0.294 | -0.149 |
| -0.187 | -0.158 |
| -0.146 | -0.128 |
| -0.181 | 0.091 |
| 0.085 | -0.391 |
| -0.343 | -0.123 |
| -0.480 | -0.055 |
| 0.009 | -0.099 |
| -0.207 | -0.009 |
| -0.008 | -0.05 |
| -0.003 | -0.016 |
| -0.042 | -0.203 |
| -0.051 | -0.121 |
| -0.168 | -0.042 |
| -0.062 | -0.061 |
| -0.090 | -0.071 |
| 0.001 | -0.285 |
| 0.008 | -0.044 |
| -0.053 | 0.040 |
| 0.044 | 0.027 |
| -0.023 | -0.031 |
| -0.136 | 0.001 |
| -0.018 | -0.002 |
| -0.030 | -0.048 |
| -0.047 |  |


| 23.686 |
| ---: |
| -23.661 |
| 2.109 |
| -2.082 |
| 2.111 |
| -2.082 |
| 2.128 |
| -2.096 |
| 2.177 |
| -2.126 |
| 0.045 |
| 0.048 |
| 0.050 |
| 0.053 |
| 0.075 |
| 0.044 |
| 0.044 |
| 0.046 |
| 0.048 |
| 0.071 |
| -0.002 |
| -0.003 |
| 0.128 |
| -0.015 |
| -0.023 |
| 0.004 |
| -0.051 |
| -0.015 |
| -0.009 |
| -0.006 |
| 0.026 |
| -0.031 |
| -0.157 |
| -0.112 |
| -0.054 |
| -0.056 |

46.458
0.013
4.379
0.014
4.373
0.015
4.346
0.025
4.300
0.029
0.030
0.031
0.032
0.043
0.024
0.025
0.025
0.024
0.033
-0.001
-0.001
-0.357
-0.034
-0.022
0.009
-0.042
-0.005
0.002
-0.032
0.010
-0.009
-0.120
-0.041
-0.022
0.035

49.891
0.012
4.278
0.013
4.251
0.023
4.203
0.026
0.027
0.028
0.029
0.040
0.022
0.022
0.023
0.022
0.032
-0.001
-0.001
-0.307
-0.016
-0.015
0.005
-0.030
-0.006
0.002
-0.013
0.007
-0.008
-0.100
-0.038
-0.022
0.033
26.802
-26.779
2.038

|  <br>  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

53.145
0.012
4.162
0.022
4.112
0.023
0.024
0.026
0.027
0.038
0.020
0.021
0.021
0.021
0.031
0.000
-0.001
-0.269
-0.009
-0.008
0.005
-0.029
-0.004
0.002
-0.003
0.007
-0.007
-0.086
-0.035
-0.019
0.029


## Variable names and defiitions

## Event costs

fatalCVD
fatalNONCVD
firsteventMI
MIdiabetes
firsteventMI2
MIdiabetes2
firsteventMI3
MIdiabetes3
firsteventMI4
MIdiabetes4
feMI
feMIdiabetes
firsteventStroke_।
firsteventStroke_I2
firsteventStroke_I3
firsteventStroke_14
feSTROKE_I
firsteventStroke_H
firsteventStroke_H2
firsteventStroke_H3
firsteventStroke_H4
feSTROKE_H
Cost of a fatal cardiovascular event
Cost of a fatal noncardiovascular event
Cost of myocardial infarction in first quarter following event
Additional cost of myocardial infarction in first quarter for patients with diabetes
Cost of myocardial infarction in second quarter following event
Additional cost of myocardial infarction in second quarter for patients with diabetes Cost of myocardial infarction in third quarter following event
Additional cost of myocardial infarction in second quarter for patients with diabetes
Cost of myocardial infarction in fourth quarter following event
Additional cost of myocardial infarction in fourth quarter for patients with diabetes
Cost of myocardial infarction in all subsequent quarters following event
Additional cost of myocardial infarction in all subsequent for patients with diabetes
Cost of ischemic stroke in first quarter following event
Cost of ischemic stroke in second quarter following event
Cost of ischemic stroke in third quarter following event
Cost of ischemic stroke in fourth quarter following event
Cost of ischemic stroke in all subsequent quarters following event
Cost of hemorrhagic stroke in first quarter following event
Cost of hemorrhagic stroke in second quarter following event
Cost of hemorrhagic stroke in third quarter following event
Cost of hemorrhagic stroke in fourth quarter following event
Cost of hemorrhagic stroke in all subsequent quarters following event

Background cost coefficients for quarter costs

| age0 | Baseline age |
| :--- | :--- |
| timeperiod | Model cycle number |
| diabetes | History of diabetes |
| hist_liver | History of liver disease |
| hist_hf | History of heart failure |
| hist_af | History of atrial fibrillation |
| hist_pad | History of peripheral artery disease |
| hist_copd | History of chronic obstructive pulmonary disease |
| hist_cancer | History of cancer |
| hist_renal | History of renal disease |
| sex | Female |
| CHD | Other CHD |
| NSTEMI | NSTEMI |
| STEMI | STEMI |
| UA | Unstable Angina |
| _cons | Constant |

# Modelling lifetime costs and health outcomes for patients with stable coronary artery disease 

Appendix D: Modelling and Selection of Risk Equations

The prognostic factors used in the risk equations as covariates were taken from the work of Rapsomaniki, Eleni, et al. "Prognostic models for stable coronary artery disease based on electronic health record cohort of 102023 patients." European heart journal 35.13 (2014): 844-852. This study compares different prognostic models using the CALIBER dataset and develops a model to best exploit the unique properties of this dataset. We also follow this study in terms of the imputation model used to impute missing covariate values as detailed in the technical appendix to that study:
http://eurheartj.oxfordjournals.org/content/ehj/suppl/2013/12/01/eht533.DC1/eht533supp1 .pdf

In this study we use these prognostic factors to fit a range of parametric survival models to each of the 11 risk equations in our model. We calculate hazards and survival over the time period we need to extrapolate our model over for every patient in the dataset and plot average values of these for each parametric model. These average predictions were used to assess clinical plausibility of the extrapolation made. The plots also contain piecewise exponentials for the hazards and Kaplan Meir estimates for survival to allow us to visually compare observed event rates to those predicted by averaging our parametric equations.

We also use the Akaike information criteria (AIC) to assess the goodness of fit of the various different parametric survival models to the observed data. The parametric model which has the best performance on the AIC is highlighted in red for each equation. These "best" performing models across the 11 equations were all deemed to be plausible extrapolations by our clinical experts and were combined in a competing risks framework using the methods proposed by Putter, H., M. Fiocco, and R. B. Geskus. "Tutorial in biostatistics: competing risks and multi-state models." Statistics in medicine 26.11 (2007): 2389.

The competing risks model was used to estimate patient specific time dependent transition probabilities for the Markov model described in appendix (b) by using the patient specific prognostic factors as covariates in the 11 risk equations to generate appropriate cumulative incidence functions from which transition probabilities could be derived.

The variance covariances matrices from the estimated models for the risk equations were used in the probabilistic sensitvity analysis of the model to account for the non-linearities in the model and characterise the uncertainty around the model estimates.

Equation 1: FE MI
Sociodemographic characteristics
Age in men
Age in women
Women vs men
Most deprived quintile, yes vs. no
SCAD diagnosis and severity
Other CHD vs. stable angina
NSTEMI vs. stable angina
STEMI vs stable angina
Unstable angina vs. stable angina
PCI in last 6 months
CABG in last 6 months
Previous/recurrent MI
Use of nitrates
CVD risk factors
Current smoker vs. never
Ex-smoker vs. never
Hypertension
Diabetes mellitus
Total cholesterol, per $1 \mathrm{mmol} / \mathrm{L}$ increase
HDL, per $0.5 \mathrm{mmol} / \mathrm{L}$ increase
CVD co-morbidities
Heart failure
Peripheral arterial disease
Atrial fibrillation
Stroke
Non-CVD co-morbidities
Chornic kidney disease
Chronic obstructive pulmonary disease
Cancer
Chronic liver disease
Psychosocial characteristics
Depression at diagnosis
Anxiety at diagnosis

## Biomarkers

Heart rate, per 10 b.p.m. increase Creatinine, per 30 micromol/Lincrease
White cell count, per $1.510^{9} / \mathrm{L}$ increase Haemoglobin, per $1.5 \mathrm{~g} / \mathrm{dL}$ increase

Generalised gamma model parameters mu
sigma
Q
Model Fit
Log-likelihood
AIC

GenGamma
LogNormal

Weibull

## Exponential

| 0.98 (0.96-0.99) | 0.98 (0.98-0.99) | 0.98 (0.98-0.98) | 0.98 (0.98-0.99) |
| :---: | :---: | :---: | :---: |
| 0.98 (0.97-1.00) | 0.98 (0.98-0.99) | 0.98 (0.98-0.99) | 0.99 (0.98-0.99) |
| 1.59 (1.19-2.14) | 1.49 (1.32-1.68) | 1.44 (1.29-1.59) | 1.35 (1.24-1.46) |
| 0.89 (0.62-1.27) | 0.81 (0.73-0.89) | 0.85 (0.78-0.93) | 0.88 (0.82-0.94) |
| 0.89 (0.69-1.13) | 0.85 (0.75-0.96) | 0.79 (0.71-0.89) | 0.84 (0.77-0.92) |
| 0.19 (0.14-0.26) | 0.19 (0.17-0.22) | 0.23 (0.20-0.26) | 0.31 (0.28-0.34) |
| 0.26 (0.19-0.36) | 0.26 (0.22-0.32) | 0.29 (0.25-0.35) | 0.37 (0.33-0.43) |
| 0.58 (0.47-0.71) | 0.57 (0.50-0.65) | 0.56 (0.50-0.63) | 0.64 (0.58-0.70) |
| 1.20 (0.77-1.87) | 1.13 (0.97-1.32) | 1.11 (0.97-1.27) | 1.05 (0.95-1.17) |
| 3.81 (1.90-7.62) | 3.05 (2.39-3.91) | 2.88 (2.28-3.65) | 2.37 (1.97-2.85) |
| 0.53 (0.46-0.62) | 0.57 (0.51-0.63) | 0.62 (0.56-0.68) | 0.69 (0.64-0.74) |
| 0.62 (0.52-0.73) | 0.64 (0.59-0.71) | 0.69 (0.64-0.75) | 0.75 (0.70-0.80) |
| 0.85 (0.65-1.10) | 0.80 (0.69-0.92) | 0.85 (0.75-0.97) | 0.91 (0.83-1.01) |
| 0.91 (0.68-1.21) | 0.91 (0.79-1.05) | 0.92 (0.81-1.05) | 0.94 (0.85-1.04) |
| 1.34 (0.85-2.10) | 1.19 (1.07-1.32) | 1.15 (1.05-1.27) | 1.12 (1.04-1.21) |
| 0.63 (0.44-0.91) | 0.60 (0.54-0.67) | 0.63 (0.57-0.70) | 0.69 (0.64-0.75) |
| 0.88 (0.76-1.03) | 0.91 (0.86-0.96) | 0.92 (0.87-0.97) | 0.94 (0.90-0.98) |
| 1.20 (0.98-1.47) | 1.11 (1.04-1.18) | 1.10 (1.04-1.17) | 1.08 (1.03-1.13) |
| 0.86 (0.70-1.05) | 0.86 (0.77-0.95) | 0.86 (0.79-0.95) | 0.88 (0.82-0.94) |
| 0.72 (0.41-1.28) | 0.62 (0.54-0.71) | 0.64 (0.57-0.71) | 0.69 (0.63-0.75) |
| 1.13 (0.84-1.51) | 1.03 (0.92-1.17) | 1.00 (0.90-1.11) | 0.98 (0.90-1.06) |
| 0.77 (0.60-0.99) | 0.79 (0.69-0.90) | 0.80 (0.71-0.90) | 0.82 (0.75-0.90) |
| 0.84 (0.41-1.70) | 0.97 (0.81-1.16) | 0.90 (0.77-1.05) | 0.84 (0.74-0.94) |
| 0.91 (0.73-1.13) | 0.85 (0.77-0.94) | 0.86 (0.78-0.94) | 0.88 (0.82-0.94) |
| 0.93 (0.70-1.25) | 0.96 (0.83-1.11) | 0.96 (0.84-1.09) | 0.95 (0.86-1.05) |
| 0.83 (0.26-2.59) | 0.77 (0.51-1.15) | 0.75 (0.53-1.07) | 0.78 (0.59-1.02) |
| 1.16 (1.00-1.35) | 1.15 (1.02-1.29) | 1.11 (0.99-1.24) | 1.06 (0.97-1.15) |
| 1.11 (0.79-1.58) | 1.04 (0.88-1.22) | 1.04 (0.90-1.21) | 1.02 (0.91-1.15) |
| 1.02 (0.96-1.08) | 1.00 (0.95-1.05) | 0.99 (0.95-1.04) | 0.99 (0.95-1.03) |
| 0.88 (0.77-1.00) | 0.89 (0.85-0.94) | 0.91 (0.87-0.95) | 0.93 (0.90-0.96) |
| 0.89 (0.82-0.97) | 0.89 (0.85-0.93) | 0.90 (0.87-0.93) | 0.92 (0.89-0.94) |
| 1.21 (1.09-1.34) | 1.17 (1.10-1.25) | 1.15 (1.08-1.21) | 1.12 (1.07-1.17) |
| 13.24 (12.32-14.16) | 12.79 (12.59-12.99) | 11.83 (11.65-12.00) | 10.90 (10.80-11.00) |
| 3.67 (2.27-5.95) | 2.91 (2.84-2.97) | 1.28 (1.24-1.31) | 1 |
| -0.23 (-0.77-0.31) | 0 | 1 | 1 |
| -52068.90 | -51904.95 | -51904.60 | -52099.34 |
| 104207.81 | 103877.90 | 103877.20 | 104264.68 |

First Event Non-Fatal MI: Overall Average (N=4719)


First Event Non-Fatal MI: Overall Average ( $\mathrm{N}=4719$ )


Equation 2: FE Stroke
Sociodemographic characteristics
Age in men
Age in women
Women vs men
Most deprived quintile, yes vs. no
SCAD diagnosis and severity
Other CHD vs. stable angina
NSTEMI vs. stable angina
STEMI vs stable angina
Unstable angina vs. stable angina
PCI in last 6 months
CABG in last 6 months
Previous/recurrent MI
Use of nitrates
CVD risk factors
Current smoker vs. never
Ex-smoker vs. never
Hypertension
Diabetes mellitus
Total cholesterol, per $1 \mathrm{mmol} / \mathrm{L}$ increase
HDL, per $0.5 \mathrm{mmol} / \mathrm{L}$ increase

## CVD co-morbidities

Heart failure
Peripheral arterial disease
Atrial fibrillation
Stroke
Non-CVD co-morbidities
Chornic kidney disease
Chronic obstructive pulmonary disease Cancer
Chronic liver disease
Psychosocial characteristics
Depression at diagnosis
Anxiety at diagnosis

## Biomarkers

Heart rate, per 10 b.p.m. increase Creatinine, per 30 micromol/L increase
White cell count, per $1.510^{9} / \mathrm{L}$ increase Haemoglobin, per $1.5 \mathrm{~g} / \mathrm{dL}$ increase

Generalised gamma model parameters mu sigma
Q
Model Fit
Log-likelihood
AIC

GenGamma
LogNormal

## Exponential

| 0.95 (0.95-0.96) | 0.95 (0.95-0.96) | 0.96 (0.95-0.96) | 0.96 (0.95-0.96) |
| :---: | :---: | :---: | :---: |
| 1.01 (1.00-1.02) | 1.01 (1.00-1.01) | 1.00 (1.00-1.01) | 1.00 (1.00-1.01) |
| 1.12 (0.98-1.28) | 1.13 (1.02-1.25) | 1.12 (1.02-1.23) | 1.12 (1.02-1.23) |
| 0.77 (0.68-0.87) | 0.78 (0.71-0.86) | 0.81 (0.74-0.88) | 0.81 (0.75-0.88) |
| 0.99 (0.86-1.14) | 1.01 (0.90-1.14) | 1.00 (0.90-1.11) | 1.00 (0.91-1.11) |
| 1.00 (0.84-1.18) | 0.92 (0.78-1.08) | 0.93 (0.81-1.08) | 0.93 (0.81-1.07) |
| 1.22 (0.68-2.18) | 1.06 (0.84-1.34) | 1.05 (0.84-1.31) | 1.04 (0.84-1.30) |
| 0.91 (0.75-1.11) | 0.88 (0.77-0.99) | 0.88 (0.79-0.98) | 0.88 (0.79-0.98) |
| 1.09 (0.80-1.49) | 1.13 (0.94-1.37) | 1.14 (0.95-1.36) | 1.13 (0.95-1.35) |
| 1.21 (0.96-1.52) | 1.19 (0.95-1.48) | 1.15 (0.94-1.41) | 1.15 (0.95-1.40) |
| 0.87 (0.69-1.08) | 0.88 (0.78-0.99) | 0.90 (0.81-1.00) | 0.90 (0.82-1.00) |
| 0.97 (0.84-1.14) | 0.96 (0.88-1.05) | 0.97 (0.89-1.05) | 0.97 (0.89-1.04) |
| 0.74 (0.59-0.92) | 0.74 (0.65-0.84) | 0.79 (0.71-0.88) | 0.80 (0.72-0.89) |
| 0.99 (0.81-1.21) | 1.01 (0.89-1.14) | 1.01 (0.90-1.14) | 1.01 (0.91-1.13) |
| 1.02 (0.85-1.22) | 1.04 (0.93-1.15) | 1.02 (0.93-1.13) | 1.02 (0.93-1.12) |
| 0.69 (0.60-0.80) | 0.72 (0.64-0.80) | 0.74 (0.67-0.82) | 0.75 (0.68-0.82) |
| 0.94 (0.86-1.02) | 0.93 (0.89-0.99) | 0.95 (0.90-1.00) | 0.95 (0.91-1.00) |
| 1.00 (0.90-1.11) | 1.00 (0.91-1.10) | 0.99 (0.91-1.07) | 0.99 (0.91-1.07) |
| 0.85 (0.75-0.96) | 0.86 (0.78-0.95) | 0.90 (0.83-0.98) | 0.90 (0.83-0.98) |
| 0.80 (0.67-0.96) | 0.84 (0.73-0.96) | 0.87 (0.78-0.98) | 0.87 (0.78-0.98) |
| 0.59 (0.51-0.68) | 0.62 (0.56-0.69) | 0.66 (0.60-0.72) | 0.67 (0.61-0.73) |
| 0.23 (0.19-0.28) | 0.22 (0.20-0.25) | 0.30 (0.27-0.33) | 0.31 (0.28-0.33) |
| 1.23 (0.96-1.57) | 1.11 (0.92-1.34) | 1.05 (0.88-1.25) | 1.03 (0.87-1.23) |
| 1.07 (0.96-1.20) | 1.08 (0.98-1.19) | 1.07 (0.98-1.16) | 1.06 (0.98-1.16) |
| 1.08 (0.89-1.31) | 1.03 (0.90-1.19) | 1.04 (0.92-1.17) | 1.03 (0.92-1.17) |
| 0.72 (0.41-1.24) | 0.79 (0.52-1.19) | 0.78 (0.55-1.12) | 0.79 (0.55-1.12) |
| 0.90 (0.76-1.06) | 0.90 (0.81-1.01) | 0.89 (0.81-0.98) | 0.89 (0.81-0.98) |
| 0.96 (0.80-1.16) | 0.94 (0.81-1.09) | 0.94 (0.82-1.07) | 0.94 (0.83-1.07) |
| 1.00 (0.93-1.07) | 0.99 (0.94-1.04) | 0.99 (0.95-1.03) | 0.99 (0.95-1.03) |
| 0.97 (0.90-1.03) | 0.96 (0.90-1.02) | 0.97 (0.92-1.02) | 0.97 (0.92-1.02) |
| 0.92 (0.88-0.97) | 0.93 (0.90-0.97) | 0.94 (0.91-0.97) | 0.94 (0.91-0.97) |
| 1.04 (0.99-1.09) | 1.04 (0.98-1.09) | 1.03 (0.99-1.08) | 1.03 (0.99-1.08) |
| 12.56 (12.32-12.8) | 12.37 (12.17-12.57) | 11.28 (11.11-11.45) | 11.19 (11.07-11.31) |
| 2.72 (2.29-3.23) | 2.47 (2.40-2.54) | 1.02 (0.99-1.06) | 1 |
| -0.09 (-0.36-0.17) | 0 | 1 | 1 |
| -36689.77 | -36652.82 | -36630.25 | -36631.56 |
| 73449.54 | 73373.64 | 73328.51 | 73329.11 |

First Event Non-Fatal Ischaemic Stroke: Overall Average ( $\mathrm{N}=3222$ )


First Event Non-Fatal Ischaemic Stroke: Overall Average ( $\mathrm{N}=3222$ )


Equation 3: FE Stroke H
Sociodemographic characteristics
Age in men
Age in women
Women vs men
Most deprived quintile, yes vs. no
SCAD diagnosis and severity
Other CHD vs. stable angina
NSTEMI vs. stable angina
STEMI vs stable angina
Unstable angina vs. stable angina
PCl in last 6 months
CABG in last 6 months
Previous/recurrent MI
Use of nitrates
CVD risk factors
Current smoker vs. never
Ex-smoker vs. never
Hypertension
Diabetes mellitus
Total cholesterol, per $1 \mathrm{mmol} / \mathrm{L}$ increase
HDL, per $0.5 \mathrm{mmol} / \mathrm{L}$ increase
CVD co-morbidities
Heart failure
Peripheral arterial disease
Atrial fibrillation
Stroke
Non-CVD co-morbidities
Chornic kidney disease
Chronic obstructive pulmonary disease
Cancer
Chronic liver disease
Psychosocial characteristics
Depression at diagnosis
Anxiety at diagnosis

## Biomarkers

Heart rate, per 10 b.p.m. increase Creatinine, per 30 micromol/L increase White cell count, per $1.510^{9} / \mathrm{L}$ increase Haemoglobin, per $1.5 \mathrm{~g} / \mathrm{dL}$ increase

Generalised gamma model parameters

## mu

sigma
Q
Model Fit
Log-likelihood
AIC

## GenGamma

LogNorm
$1.83(1.24-2.70) \quad 1.49(1.11-2.00) \quad 1.41(1.07-1.86) \quad 1.39(1.07-1.81)$

| $23.07(21.60-24.54)$ | $16.59(15.65-17.53)$ | $13.36(12.73-13.99)$ | $13.09(12.93-13.25)$ |
| ---: | ---: | ---: | ---: |
| $14.52(12.56-16.78)$ | $3.41(3.09-3.77)$ | $1.05(0.94-1.17)$ | 1 |
| $-2.76(-3.32--2.19)$ | 0 | 1 | 1 |
|  |  |  |  |
| -3711.20 | -3694.11 | -3691.75 | -3692.16 |
| 7434.41 | 7398.23 | 7393.50 | 7392.32 |

First Event Non-Fatal Hemorrhagic Stroke: Overall Average ( $\mathbf{N}=\mathbf{2 6 2}$ )


First Event Non-Fatal Hemorrhagic Stroke: Overall Average ( $\mathbf{N}=\mathbf{2 6 2}$ )


Equation 4: FE Fatal CVD
Sociodemographic characteristics
Age in men
Age in women
Women vs men
Most deprived quintile, yes vs. no
SCAD diagnosis and severity
Other CHD vs. stable angina
NSTEMI vs. stable angina
STEMI vs stable angina
Unstable angina vs. stable angina
PCI in last 6 months
CABG in last 6 months
Previous/recurrent MI
Use of nitrates
CVD risk factors
Current smoker vs. never
Ex-smoker vs. never
Hypertension
Diabetes mellitus
Total cholesterol, per $1 \mathrm{mmol} / \mathrm{L}$ increase
HDL, per $0.5 \mathrm{mmol} / \mathrm{L}$ increase
CVD co-morbidities
Heart failure
Peripheral arterial disease
Atrial fibrillation
Stroke
Non-CVD co-morbidities
Chornic kidney disease
Chronic obstructive pulmonary disease Cancer
Chronic liver disease
Psychosocial characteristics
Depression at diagnosis
Anxiety at diagnosis

## Biomarkers

Heart rate, per 10 b.p.m. increase Creatinine, per 30 micromol/Lincrease White cell count, per $1.510^{9} / \mathrm{L}$ increase Haemoglobin, per $1.5 \mathrm{~g} / \mathrm{dL}$ increase

Generalised gamma model parameters mu
sigma
Q
Model Fit
Log-likelihood
AIC

GenGamma
LogNormal

Exponential

| 0.94 (0.92-0.96) | 0.94 (0.93-0.94) | 0.94 (0.94-0.94) | 0.94 (0.94-0.94) |
| :---: | :---: | :---: | :---: |
| 0.97 (0.95-1.00) | 0.97 (0.97-0.98) | 0.97 (0.97-0.98) | 0.97 (0.97-0.98) |
| 1.82 (0.95-3.46) | 2.04 (1.86-2.24) | 1.97 (1.81-2.16) | 2.00 (1.83-2.19) |
| 0.90 (0.51-1.58) | 0.85 (0.79-0.92) | 0.90 (0.84-0.96) | 0.90 (0.84-0.96) |
| 0.84 (0.57-1.24) | 0.85 (0.78-0.93) | 0.85 (0.79-0.92) | 0.85 (0.78-0.91) |
| 0.54 (0.33-0.88) | 0.54 (0.48-0.60) | 0.57 (0.53-0.63) | 0.57 (0.52-0.62) |
| 0.73 (0.29-1.84) | 0.74 (0.62-0.87) | 0.77 (0.65-0.90) | 0.77 (0.65-0.90) |
| 0.91 (0.61-1.34) | 0.90 (0.82-1.00) | 0.89 (0.81-0.97) | 0.89 (0.81-0.97) |
| 1.42 (0.56-3.56) | 1.71 (1.46-2.00) | 1.82 (1.55-2.13) | 1.85 (1.58-2.18) |
| 1.58 (0.46-5.46) | 2.09 (1.73-2.51) | 1.98 (1.65-2.36) | 2.00 (1.67-2.41) |
| 0.68 (0.52-0.90) | 0.72 (0.66-0.78) | 0.76 (0.72-0.82) | 0.76 (0.71-0.81) |
| 0.71 (0.59-0.85) | 0.70 (0.65-0.74) | 0.75 (0.71-0.79) | 0.74 (0.70-0.79) |
| 0.60 (0.34-1.04) | 0.76 (0.68-0.84) | 0.80 (0.73-0.87) | 0.79 (0.72-0.86) |
| 0.77 (0.51-1.17) | 0.95 (0.86-1.05) | 0.96 (0.87-1.05) | 0.96 (0.87-1.05) |
| 0.93 (0.71-1.22) | 0.98 (0.90-1.06) | 0.98 (0.91-1.06) | 0.98 (0.91-1.06) |
| 0.79 (0.57-1.11) | 0.73 (0.68-0.80) | 0.75 (0.70-0.80) | 0.75 (0.70-0.80) |
| 0.97 (0.84-1.13) | 0.96 (0.91-1.00) | 0.97 (0.93-1.01) | 0.97 (0.92-1.01) |
| 1.05 (0.81-1.36) | 1.05 (0.99-1.12) | 1.03 (0.98-1.08) | 1.03 (0.98-1.09) |
| 0.47 (0.38-0.59) | 0.52 (0.48-0.55) | 0.58 (0.54-0.61) | 0.57 (0.53-0.60) |
| 0.70 (0.44-1.12) | 0.72 (0.66-0.79) | 0.75 (0.70-0.81) | 0.75 (0.69-0.81) |
| 0.69 (0.59-0.82) | 0.73 (0.68-0.79) | 0.76 (0.72-0.81) | 0.76 (0.71-0.81) |
| 0.63 (0.35-1.14) | 0.66 (0.60-0.71) | 0.72 (0.67-0.77) | 0.71 (0.66-0.77) |
| 1.04 (0.33-3.33) | 0.98 (0.86-1.11) | 0.94 (0.84-1.04) | 0.95 (0.85-1.05) |
| 1.22 (0.78-1.91) | 1.05 (0.98-1.13) | 1.03 (0.97-1.10) | 1.04 (0.97-1.10) |
| 1.29 (0.83-2.00) | 1.10 (1.00-1.22) | 1.12 (1.03-1.22) | 1.12 (1.03-1.23) |
| 0.44 (0.09-2.09) | 0.64 (0.48-0.85) | 0.76 (0.59-0.99) | 0.76 (0.59-0.99) |
| 0.89 (0.58-1.37) | 0.90 (0.83-0.98) | 0.89 (0.83-0.96) | 0.89 (0.83-0.96) |
| 0.71 (0.39-1.28) | 0.85 (0.77-0.95) | 0.88 (0.80-0.97) | 0.88 (0.80-0.97) |
| 0.89 (0.81-0.98) | 0.90 (0.87-0.93) | 0.92 (0.89-0.95) | 0.92 (0.89-0.94) |
| 0.89 (0.81-0.97) | 0.89 (0.86-0.92) | 0.91 (0.89-0.93) | 0.90 (0.88-0.93) |
| 0.85 (0.77-0.95) | 0.89 (0.86-0.93) | 0.91 (0.88-0.94) | 0.91 (0.88-0.94) |
| 1.30 (1.12-1.50) | 1.28 (1.23-1.32) | 1.23 (1.19-1.26) | 1.23 (1.19-1.27) |
| 12.33 (11.37-13.29) | 11.49 (11.35-11.63) | 10.9 (10.77-11.02) | 10.98 (10.88-11.09) |
| 4.24 (3.86-4.66) | 2.09 (2.05-2.14) | 0.97 (0.95-1.00) | 1 |
| -1.30 (-1.78--0.81) | 0 | 1 | 1 |
| -58770.27 | -57762.41 | -57592.89 | -57595.48 |
| 117610.54 | 115592.82 | 115253.77 | 115256.97 |

First Event Fatal CVD: Overall Average ( $\mathrm{N}=5536$ )


First Event Fatal CVD: Overall Average ( $\mathrm{N}=5536$ )


Equation 5: FE Fatal non-CVD Sociodemographic characteristics Age in men
Age in women
Women vs men
Most deprived quintile, yes vs. no
SCAD diagnosis and severity
Other CHD vs. stable angina
NSTEMI vs. stable angina
STEMI vs stable angina
Unstable angina vs. stable angina
PCl in last 6 months
CABG in last 6 months
Previous/recurrent MI
Use of nitrates
CVD risk factors
Current smoker vs. never
Ex-smoker vs. never
Hypertension
Diabetes mellitus
Total cholesterol, per $1 \mathrm{mmol} / \mathrm{L}$ increase
HDL, per $0.5 \mathrm{mmol} / \mathrm{L}$ increase
CVD co-morbidities
Heart failure
Peripheral arterial disease
Atrial fibrillation
Stroke
Non-CVD co-morbidities
Chornic kidney disease
Chronic obstructive pulmonary disease
Cancer
Chronic liver disease
Psychosocial characteristics
Depression at diagnosis
Anxiety at diagnosis
Biomarkers
Heart rate, per 10 b.p.m. increase Creatinine, per 30 micromol/L increase
White cell count, per $1.510^{9} / \mathrm{L}$ increase Haemoglobin, per $1.5 \mathrm{~g} / \mathrm{dL}$ increase

Generalised gamma model parameters mu
sigma
Q
Model Fit
Log-likelihood
AIC

GenGamma

| 0.94 (0.94-0.95) | 0.94 (0.94-0.95) | 0.94 (0.94-0.95) | 0.94 (0.93-0.94) |
| :---: | :---: | :---: | :---: |
| 0.99 (0.98-0.99) | 0.99 (0.98-0.99) | 0.99 (0.98-0.99) | 0.99 (0.98-0.99) |
| 1.71 (1.60-1.84) | 1.75 (1.65-1.86) | 1.65 (1.56-1.74) | 1.75 (1.64-1.87) |
| 0.90 (0.74-1.08) | 0.84 (0.79-0.88) | 0.86 (0.82-0.90) | 0.85 (0.80-0.89) |
| 1.03 (0.90-1.18) | 1.04 (0.98-1.11) | 1.02 (0.97-1.08) | 1.02 (0.96-1.08) |
| 0.91 (0.70-1.19) | 0.89 (0.82-0.96) | 0.90 (0.84-0.96) | 0.90 (0.84-0.98) |
| 1.05 (0.62-1.77) | 0.93 (0.83-1.04) | 0.90 (0.81-1.00) | 0.91 (0.80-1.02) |
| 1.07 (0.91-1.26) | 1.03 (0.96-1.10) | 1.02 (0.96-1.09) | 1.02 (0.95-1.10) |
| 1.31 (1.07-1.59) | 1.34 (1.21-1.50) | 1.32 (1.19-1.47) | 1.40 (1.24-1.58) |
| 1.75 (1.23-2.50) | 1.85 (1.62-2.12) | 1.74 (1.53-1.99) | 1.86 (1.60-2.17) |
| 1.02 (0.90-1.16) | 1.01 (0.95-1.08) | 1.00 (0.95-1.06) | 1.00 (0.94-1.07) |
| 0.90 (0.85-0.96) | 0.89 (0.85-0.93) | 0.92 (0.88-0.96) | 0.91 (0.87-0.95) |
| 0.73 (0.65-0.81) | 0.70 (0.65-0.76) | 0.74 (0.69-0.80) | 0.69 (0.64-0.75) |
| 0.86 (0.79-0.94) | 0.84 (0.78-0.91) | 0.85 (0.80-0.91) | 0.83 (0.77-0.89) |
| 1.15 (1.08-1.22) | 1.11 (1.05-1.18) | 1.11 (1.06-1.17) | 1.13 (1.07-1.19) |
| 0.90 (0.81-1.00) | 0.91 (0.86-0.97) | 0.91 (0.86-0.95) | 0.90 (0.85-0.95) |
| 1.00 (0.96-1.04) | 1.01 (0.98-1.04) | 1.01 (0.98-1.04) | 1.00 (0.97-1.04) |
| 0.97 (0.94-1.00) | 0.98 (0.95-1.01) | 0.98 (0.95-1.01) | 0.98 (0.95-1.01) |
| 0.72 (0.68-0.77) | 0.71 (0.67-0.74) | 0.76 (0.73-0.80) | 0.74 (0.70-0.77) |
| 0.84 (0.76-0.93) | 0.81 (0.75-0.86) | 0.83 (0.78-0.87) | 0.81 (0.76-0.87) |
| 0.88 (0.75-1.03) | 0.84 (0.80-0.90) | 0.88 (0.84-0.93) | 0.88 (0.83-0.93) |
| 0.86 (0.75-0.98) | 0.84 (0.79-0.90) | 0.87 (0.82-0.92) | 0.86 (0.81-0.92) |
| 0.92 (0.81-1.05) | 0.91 (0.83-0.99) | 0.89 (0.82-0.96) | 0.93 (0.85-1.02) |
| 0.74 (0.63-0.86) | 0.73 (0.70-0.77) | 0.76 (0.73-0.79) | 0.74 (0.70-0.77) |
| 0.49 (0.42-0.57) | 0.41 (0.39-0.44) | 0.56 (0.53-0.58) | 0.51 (0.49-0.54) |
| 0.44 (0.27-0.72) | 0.43 (0.36-0.52) | 0.53 (0.46-0.62) | 0.50 (0.42-0.59) |
| 0.81 (0.73-0.89) | 0.80 (0.75-0.84) | 0.82 (0.78-0.86) | 0.80 (0.76-0.85) |
| 0.83 (0.55-1.25) | 0.78 (0.72-0.84) | 0.83 (0.78-0.89) | 0.82 (0.76-0.88) |
| 0.90 (0.86-0.95) | 0.89 (0.87-0.92) | 0.91 (0.89-0.93) | 0.90 (0.88-0.93) |
| 0.98 (0.93-1.04) | 1.00 (0.98-1.02) | 0.99 (0.97-1.01) | 0.99 (0.97-1.01) |
| 0.87 (0.82-0.92) | 0.85 (0.84-0.87) | 0.89 (0.87-0.90) | 0.87 (0.86-0.89) |
| 1.38 (1.33-1.42) | 1.41 (1.37-1.44) | 1.33 (1.30-1.36) | 1.38 (1.35-1.41) |
| 10.1 (10.01-10.19) | 10.25 (10.15-10.34) | 9.95 (9.87-10.03) | 10.32 (10.24-10.40) |
| 1.37 (1.11-1.70) | 1.73 (1.7-1.76) | 0.86 (0.85-0.88) | 1 |
| 0.46 (0.19-0.73) | 0 | 1 | 1 |
| -87260.46 | -87397.88 | -87058.62 | -87182.58 |
| 174590.93 | 174863.76 | 174185.23 | 174431.16 |

First Event Fatal Non-CVD: Overall Average (N=8663)


First Event Fatal Non-CVD: Overall Average ( $\mathrm{N}=8663$ )


| Equation 6: Post MI Fatal CVD | GenGamma | LogNormal | Weibull | Exponential |
| :--- | ---: | ---: | ---: | ---: |
| Sociodemographic characteristics |  |  |  |  |
| Age in men | $0.85(0.83-0.87)$ | $0.85(0.83-0.87)$ | $0.85(0.83-0.87)$ | $0.92(0.91-0.93)$ |
| Age in women | $0.98(0.95-1.02)$ | $0.98(0.95-1.02)$ | $0.98(0.95-1.02)$ | $0.99(0.97-1.00)$ |
| Women vs men | $1.87(1.12-3.11)$ | $1.87(1.12-3.11)$ | $1.90(1.12-3.22)$ | $1.39(1.11-1.74)$ |
| Generalised gamma model parameters |  |  |  |  |
| mu | $11.14(10.71-11.56)$ | $11.13(10.74-11.51)$ | $11.27(10.89-11.65)$ | $8.85(8.74-8.96)$ |
| sigma | $4.21(3.60-4.93)$ | $4.24(4.02-4.48)$ | $2.39(2.25-2.54)$ | 1 |
| Q | $0.02(-0.32-0.36)$ | 0 | 1 | 1 |
| Model Fit |  |  |  |  |
| Log-likelihood | -6781.95 | -6781.95 | -6798.12 | -7388.97 |
| AIC | 13575.89 | 13573.90 | 13606.23 | 14785.94 |



Post MI CVD Mortality: Overall Average ( $\mathrm{N}=813$ )


| Equation 7: Post MI Fatal Non-CVD | GenGamma | LogNormal | Weibull | Exponential |
| :--- | ---: | ---: | ---: | ---: |
| Sociodemographic characteristics |  |  | $0.91(0.90-0.92)$ |  |
| Age in men | $0.88(0.86-0.89)$ | $0.87(0.85-0.88)$ | $0.87(0.86-0.89)$ | 0.9 |
| Age in women | $1.03(1.00-1.05)$ | $1.02(0.99-1.05)$ | $1.03(1.00-1.05)$ | $1.01(1.00-1.03)$ |
| Women vs men | $0.91(0.64-1.30)$ | $1.04(0.71-1.52)$ | $0.95(0.66-1.37)$ | $1.00(0.81-1.24)$ |
| Generalised gamma model parameters |  |  |  |  |
| mu | $10.38(10.02-10.75)$ | $10.38(10.07-10.69)$ | $10.32(10.03-10.6)$ | $8.99(8.87-9.11)$ |
| sigma | $0.77(0.37-1.61)$ | $3.27(3.09-3.45)$ | $1.73(1.63-1.84)$ | 1 |
| Q | $2.47(0.63-4.3)$ | 0 | 1 |  |
| Model Fit |  | 1 |  |  |
| Log-likelihood | -6755.79 | -6788.29 | -6762.82 |  |
| AIC | 13523.58 | 13586.59 | 13535.64 |  |

Post MI Non-CVD Mortality: Overall Average ( $\mathrm{N}=\mathbf{7 6 0}$ )


Post MI Non-CVD Mortality: Overall Average ( $\mathrm{N}=\mathbf{7 6 0}$ )


Equation 8: Post Ischaemic Stroke Fatal CVD Sociodemographic characteristics
Age in men
Age in women
Women vs men
Generalised gamma model parameters
mu
sigma
Q
Model Fit Log-likelihood AIC

| GenGamma | LogNormal | Weibull | Exponential |
| ---: | ---: | ---: | ---: |
| $0.91(0.89-0.93)$ | $0.91(0.89-0.94)$ | $0.91(0.89-0.93)$ | $0.94(0.92-0.95)$ |
| $0.99(0.96-1.03)$ | $0.99(0.95-1.03)$ | $0.99(0.96-1.03)$ | $0.99(0.97-1.01)$ |
| $1.52(0.90-2.54)$ | $1.54(0.90-2.62)$ | $1.54(0.91-2.59)$ | $1.35(0.98-1.86)$ |
|  |  |  |  |
| $10.42(9.45-11.39)$ | $10.68(10.22-11.14)$ | $10.4(9.98-10.81)$ | $9.08(8.89-9.27)$ |
| $0.59(0.04-9.78)$ | $3.30(3.07-3.56)$ | $1.67(1.54-1.81)$ | 1 |
| $3.00(-5.42-11.42)$ | 0 | 1 | 1 |
|  | -3796.47 | -3789.03 | -3883.70 |
| -3786.80 | 7602.95 | 7588.07 | 7775.40 |

Post Ischaemic Stroke CVD Mortality: Overall Average ( $\mathrm{N}=\mathbf{4 1 0 \text { ) }}$


Post Ischaemic Stroke CVD Mortality: Overall Average ( $\mathrm{N}=410$ )


Equation 9: Post Ischaemic Stroke Fatal Non-CVD Sociodemographic characteristics
Age in men
Age in women
Women vs men
Generalised gamma model parameters
mu
sigma
Q
Model Fit
Log-likelihood
AIC

GenGamma
0.93 (0.91-0.95) $\quad 0.93$ (0.91-0.95)
1.48 (0.97-2.26) 1.59 (1.02-2.49)
9.92 (8.53-11.3) 9.86 (9.49-10.23) $9.80(9.47-10.13) \quad 8.70(8.54-8.85)$ $0.53(0.01-38.25) \quad 3.23(3.02-3.45) \quad 1.69(1.57-1.82)$
$3.40(-11.15-17.96)$

| -4747.78 | -4760.80 | -4751.72 | -4879.00 |
| :--- | ---: | ---: | ---: |
| 5507.57 | 9531.60 | 9513.44 | 9765.9 |

## Post Ischaemic Stroke non-CVD Mortality: Overall Average ( $\mathrm{N}=525$ )



Post Ischaemic Stroke non-CVD Mortality: Overall Average ( $\mathrm{N}=525$ )


| Equation 10: Post Hemorrhagic Stroke Fatal CVD | GenGamma | LogNormal | Weibull | Exponential |
| :--- | ---: | ---: | ---: | ---: |
| Sociodemographic characteristics |  |  |  |  |
| Age in men | $0.88(0.80-0.96)$ | $0.88(0.80-0.96)$ | $0.89(0.81-0.97)$ | $0.94(0.90-0.97)$ |
| Age in women | $1.02(0.87-1.20)$ | $1.02(0.87-1.19)$ | $1.04(0.90-1.19)$ | $1.02(0.96-1.08)$ |
| Women vs men | $0.79(0.09-6.85)$ | $0.85(0.11-6.58)$ | $1.06(0.15-7.27)$ | $1.19(0.52-2.76)$ |
| Generalised gamma model parameters |  |  |  |  |
| mu | $10.95(8.99-12.9)$ | $11.02(9.31-12.74)$ | $10.79(9.18-12.41)$ | $8.58(8.06-9.09)$ |
| sigma | $4.60(2.04-10.36)$ | $4.14(3.27-5.25)$ | $2.25(1.73-2.92)$ | 1 |
| Q | $-0.26(-2.4-1.89)$ | 0 | 1 | 1 |
| Model Fit |  |  |  |  |
| Log-likelihood | -346.21 | -346.24 | -346.99 | -373.82 |
| AIC | 704.42 | 702.48 | 703.98 | 755.64 |

Post Hemorrhagic Stroke CVD Mortality: Overall Average (N=41)


Post Hemorrhagic Stroke CVD Mortality: Overall Average ( $\mathrm{N}=41$ )


| Equation 11: Post Hemorrhagic Stroke Fatal Non-CVD | GenGamma | LogNormal | Weibull |  |
| :--- | ---: | ---: | ---: | ---: |
| Soxponential |  |  |  |  |
| Age in men |  |  |  |  |
| Age in women | $0.91(0.84-0.99)$ | $0.91(0.84-0.99)$ | $0.92(0.85-0.99)$ | $0.95(0.91-0.99)$ |
| Women vs men | $0.95(0.81-1.12)$ | $0.95(0.81-1.11)$ | $0.94(0.8-1.09)$ | $0.97(0.91-1.04)$ |
| Generalised gamma model parameters | $5.81(0.68-49.96)$ | $5.64(0.62-51.43)$ | $5.70(0.57-57.48)$ | $2.59(0.88-7.65)$ |
| mu |  |  |  |  |
| sigma | $9.86(7.32-12.39)$ | $10.24(8.70-11.79)$ | $10.22(8.81-11.63)$ | $8.51(8.03-9.00)$ |
| Q | $4.55(2.38-8.72)$ | $3.68(2.85-4.75)$ | $2.01(1.53-2.66)$ |  |
| Model Fit | $-0.61(-2.86-1.64)$ | 0 | 1 |  |
| Log-likelihood |  | 1 |  |  |
| AIC | -305.31 | -305.49 | -306.60 | -323.30 |
|  | 622.63 | 620.97 | 623.20 | 654.61 |

Post Hemorrhagic Stroke non-CVD Mortality: Overall Average ( $\mathrm{N}=35$ )


Post Hemorrhagic Stroke non-CVD Mortality: Overall Average ( $\mathrm{N}=35$ )


Modelling lifetime costs and health outcomes for patients with stable coronary artery disease
Appendix E: Patient Profiles

Section 1: Patient Risk Deciles

| Patient average covariate profiles based on deciles of 5yr risk of composite CVD primary endpoint |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Risk Decile | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Overall |
| 5 year risk (average across patients) | 3.69\% | 5.70\% | 7.37\% | 9.15\% | 11.20\% | 13.71\% | 17.14\% | 22.14\% | 30.42\% | 52.37\% | 16.68\% |
| 5 year risk (at average covariate values) | 3.46\% | 5.43\% | 6.95\% | 8.53\% | 10.36\% | 12.57\% | 15.64\% | 20.07\% | 27.23\% | 44.18\% | 11.64\% |
| Socio-demographic characteristics |  |  |  |  |  |  |  |  |  |  |  |
| Sex (\% female) | 64\% | 48\% | 42\% | 39\% | 37\% | 37\% | 38\% | 42\% | 44\% | 46\% | 44\% |
| Age (if male) | 49 | 55 | 59 | 62 | 65 | 67 | 71 | 74 | 77 | 81 | 67 |
| Age (if female) | 53 | 62 | 67 | 70 | 73 | 75 | 78 | 80 | 83 | 87 | 72 |
| Age (weighted average) | 52 | 59 | 62 | 65 | 68 | 70 | 73 | 76 | 80 | 84 | 69 |
| Most deprived quintile (\%) | 15\% | 17\% | 18\% | 19\% | 20\% | 21\% | 21\% | 22\% | 22\% | 24\% | 20\% |
| SCAD diagnosis |  |  |  |  |  |  |  |  |  |  |  |
| Other CHD | 11\% | 17\% | 20\% | 22\% | 24\% | 24\% | 25\% | 26\% | 25\% | 20\% | 23\% |
| NSTEMI | 0\% | 1\% | 3\% | 5\% | 8\% | 10\% | 12\% | 17\% | 23\% | 43\% | 10\% |
| STEMI | 1\% | 4\% | 8\% | 12\% | 13\% | 14\% | 13\% | 9\% | 6\% | 4\% | 7\% |
| Unstable angina | 10\% | 13\% | 12\% | 12\% | 12\% | 12\% | 13\% | 15\% | 17\% | 15\% | 14\% |
| Stable angina | 78\% | 65\% | 56\% | 49\% | 43\% | 39\% | 37\% | 34\% | 29\% | 18\% | 47\% |
| SCAD severity |  |  |  |  |  |  |  |  |  |  |  |
| PCl in last 6 months | 9\% | 12\% | 13\% | 14\% | 13\% | 13\% | 11\% | 9\% | 6\% | 4\% | 9\% |
| CABG in last 6 months | 9\% | 7\% | 6\% | 5\% | 5\% | 4\% | 4\% | 3\% | 2\% | 1\% | 4\% |
| Previous/recurrent MI | 2\% | 6\% | 10\% | 14\% | 18\% | 23\% | 26\% | 29\% | 32\% | 43\% | 18\% |
| Use of nitrates | 10\% | 16\% | 19\% | 21\% | 24\% | 28\% | 33\% | 37\% | 43\% | 56\% | 28\% |
| Smoking status |  |  |  |  |  |  |  |  |  |  |  |
| Current smoker | 31\% | 35\% | 36\% | 37\% | 38\% | 38\% | 37\% | 35\% | 32\% | 30\% | 35\% |
| Ex-smoker | 27\% | 30\% | 31\% | 32\% | 32\% | 33\% | 34\% | 34\% | 34\% | 34\% | 32\% |
| Never smoked | 41\% | 35\% | 33\% | 31\% | 30\% | 29\% | 29\% | 31\% | 33\% | 36\% | 33\% |
| Other CVD risk factors |  |  |  |  |  |  |  |  |  |  |  |
| Hypertension | 69\% | 70\% | 71\% | 71\% | 72\% | 74\% | 76\% | 79\% | 83\% | 87\% | 76\% |
| Diabetes | 4\% | 8\% | 10\% | 12\% | 14\% | 16\% | 18\% | 21\% | 24\% | 32\% | 16\% |
| Total cholesterol (mmol/L) | 4.95 | 4.91 | 4.84 | 4.79 | 4.74 | 4.74 | 4.70 | 4.68 | 4.64 | 4.54 | 4.79 |
| HDL (mmol/L) | 1.41 | 1.37 | 1.35 | 1.35 | 1.35 | 1.35 | 1.36 | 1.37 | 1.37 | 1.35 | 1.37 |
| CVD co-morbidities |  |  |  |  |  |  |  |  |  |  |  |
| Heart failure | 5\% | 7\% | 9\% | 12\% | 15\% | 19\% | 27\% | 37\% | 52\% | 73\% | 26\% |
| Peripheral arterial disease | 1\% | 2\% | 3\% | 4\% | 6\% | 8\% | 10\% | 13\% | 16\% | 25\% | 8\% |
| Atrial fibrillation | 3\% | 5\% | 7\% | 9\% | 10\% | 13\% | 16\% | 21\% | 29\% | 43\% | 15\% |
| Stroke | 0\% | 1\% | 1\% | 2\% | 3\% | 5\% | 8\% | 14\% | 22\% | 39\% | 9\% |
| Non-CVD co-morbidities |  |  |  |  |  |  |  |  |  |  |  |
| Chronic kidney disease | 2\% | 2\% | 3\% | 4\% | 4\% | 5\% | 7\% | 9\% | 12\% | 20\% | 7\% |
| Chronic obstructive pulmonary disease | 20\% | 20\% | 20\% | 21\% | 22\% | 23\% | 25\% | 27\% | 28\% | 30\% | 23\% |
| Cancer | 4\% | 5\% | 6\% | 7\% | 8\% | 9\% | 11\% | 13\% | 14\% | 12\% | 9\% |
| Chronic liver disease | 0\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% |
| Psychosocial characteristics |  |  |  |  |  |  |  |  |  |  |  |
| Depression at diagnosis | 20\% | 17\% | 15\% | 15\% | 14\% | 14\% | 15\% | 17\% | 18\% | 21\% | 17\% |
| Anxiety at diagnosis | 7\% | 6\% | 6\% | 7\% | 7\% | 7\% | 8\% | 8\% | 10\% | 12\% | 8\% |
| Biomarkers |  |  |  |  |  |  |  |  |  |  |  |
| Heart rate (b.p.m.) | 72 | 71 | 71 | 71 | 71 | 71 | 72 | 73 | 74 | 76 | 72 |
| Creatinine (mmol/L) | 88 | 92 | 95 | 96 | 98 | 100 | 101 | 104 | 109 | 125 | 100 |
| White cell count ( $10^{9} / \mathrm{L}$ ) | 6.81 | 7.05 | 7.19 | 7.31 | 7.44 | 7.54 | 7.62 | 7.76 | 7.88 | 8.22 | 7.46 |
| Haemoglobin (g/100ml) | 14.26 | 14.26 | 14.16 | 14.05 | 13.88 | 13.70 | 13.48 | 13.16 | 12.81 | 12.20 | 13.61 |


| Sample patient covariate profiles for 10 clinically selected patients |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Patient Profile | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 5 year risk | 3.68\% | 5.72\% | 7.59\% | 9.26\% | 11.48\% | 13.83\% | 17.41\% | 22.29\% | 30.44\% | 50.11\% |
| Socio-demographic characteristics |  |  |  |  |  |  |  |  |  |  |
| Sex | Female | Female | Male |
| Age | 53 | 62 | 59 | 62 | 65 | 67 | 71 | 74 | 76 | 81 |
| Most deprived quintile | - | - | TRUE | - | - | TRUE |  |  | TRUE | - |
| SCAD diagnosis |  |  |  |  |  |  |  |  |  |  |
| Other CHD | - | - | - | - | TRUE | TRUE | TRUE | TRUE | - | - |
| NSTEMI | - | - | - | - | - | - | - | - | TRUE | TRUE |
| STEMI | - | - | - | - | - | - | - | - | - | - |
| Unstable angina | - | - | - | - | - | - | - | - | - | - |
| Stable angina | TRUE | TRUE | TRUE | TRUE | - | - | - | - | - | - |
| SCAD severity |  |  |  |  |  |  |  |  |  |  |
| PCI in last 6 months | - | - | - | - | - | - | - | - | - | - |
| CABG in last 6 months | - | - | - | - | - | - | - | - | - | - |
| Previous/recurrent MI | - | - | - | - | true | - | true | - | - | - |
| Use of nitrates | - | - | - | TRUE | - | TRUE | true | TRUE | - | - |
| Smoking Status |  |  |  |  |  |  |  |  |  |  |
| Current smoker | - | TRUE | TRUE | - | - | - | TRUE | TRUE | TRUE | - |
| Ex-smoker | - | - | - | TRUE | - | - | - | - | - | - |
| Never smoked | TRUE | - | - | - | - | TRUE | - | - | - | TRUE |
| Other CVD risk factors |  |  |  |  |  |  |  |  |  |  |
| Hypertension | TRUE |
| Diabetes | - | - | - | - | - | - | - | - | - | TRUE |
| Total cholesterol (mmol/L) | 5.57 | 4.78 | 4.30 | 6.63 | 4.39 | 4.80 | 4.68 | 4.00 | 3.23 | 3.70 |
| HDL ( $\mathrm{mmol} / \mathrm{L}$ ) | 1.83 | 1.27 | 1.39 | 1.30 | 1.20 | 0.71 | 2.10 | 0.99 | 1.61 | 0.93 |
| CVD co-morbidities |  |  |  |  |  |  |  |  |  |  |
| Heart failure | - | - | - | - | - | - | - | TRUE | TRUE | TRUE |
| Peripheral arterial disease | - | - | - | - | - | - | - | - | - | - |
| Atrial fibrillation | - | - | - | - | - | - | true | - | true | - |
| Stroke | - | - | - | - | - | - | - | - | - | - |
| Non-CVD co-morbidities |  |  |  |  |  |  |  |  |  |  |
| Chronic kidney disease | - | - | - | - | - | - | - | - | - | - |
| Chronic obstructive pulmonary disease | - | TRUE | TRUE | - | - | - | true | - | TRUE | - |
| Cancer | - | - | - | - | - | - | - | - | - | - |
| Chronic liver disease | - | - | - | - | - | - | - | - | - | - |
| Psychosocial characteristics |  |  |  |  |  |  |  |  |  |  |
| Depression at diagnosis | - | TRUE | - | TRUE | - | - | - | - | - | TRUE |
| Anxiety at diagnosis | - | - | - | - | - | - | - | - | - | - |
| Biomarkers |  |  |  |  |  |  |  |  |  |  |
| Heart rate (b.p.m.) | 66 | 69 | 77 | 79 | 70 | 65 | 67 | 78 | 79 | 79 |
| Creatinine ( $\mathrm{mmol} / \mathrm{L}$ ) | 94.35 | 116.34 | 94.00 | 103.00 | 99.83 | 85.00 | 94.00 | 113.00 | 92.54 | 114.00 |
| White cell count ( $10^{9} / \mathrm{L}$ ) | 10.20 | 7.75 | 10.35 | 8.18 | 8.37 | 5.24 | 7.16 | 9.30 | 6.13 | 9.50 |
| Haemoglobin (g/100ml) | 11.05 | 13.01 | 15.77 | 14.39 | 12.60 | 10.90 | 16.00 | 14.90 | 15.67 | 11.70 |


| Patient average covariate profiles CALIBER patients matching trial criteria |  |  |
| :---: | :---: | :---: |
| Trial | pegasus | odyssey |
| Socio-demographic characteristics |  |  |
| Sex (\% female) <br> Age (if male) <br> Age (if female) <br> Age (weighted average) <br> Most deprived quintile (\%) | $40 \%$ 75 78 76 $19 \%$ | $\begin{array}{r}44 \% \\ 69 \\ 70 \\ 70 \\ 20 \% \\ \hline\end{array}$ |
| SCAD diagnosis |  |  |
| Other CHD <br> NSTEMI <br> STEMI <br> Unstable angina <br> Stable angina | 0\% $64 \%$ $36 \%$ $0 \%$ $0 \%$ | $\begin{array}{r}22 \% \\ 12 \% \\ 8 \% \\ 13 \% \\ 45 \% \\ \hline\end{array}$ |
| SCAD severity |  |  |
| PCl in last 6 months CABG in last 6 months Previous/recurrent MI Use of nitrates | $23 \%$ $6 \%$ $27 \%$ $27 \%$ | $\begin{array}{r}10 \% \\ 5 \% \\ 20 \% \\ 29 \% \\ \hline\end{array}$ |
| Smoking status |  |  |
| Current smoker <br> Ex-smoker <br> Never smoked | $28 \%$ $35 \%$ $37 \%$ | $34 \%$ $32 \%$ $33 \%$ |
| Other CVD risk factors |  |  |
| Hypertension <br> Diabetes <br> Total cholesterol (mmol/L) <br> HDL (mmol/L) | $\begin{gathered} \hline 68 \% \\ 22 \% \\ 4.22 \\ 1.32 \end{gathered}$ | $\begin{array}{c\|} \hline 75 \% \\ 16 \% \\ 4.75 \\ 1.36 \end{array}$ |
| CVD co-morbidities |  |  |
| Heart failure <br> Peripheral arterial disease <br> Atrial fibrillation <br> Stroke | $28 \%$ $11 \%$ $20 \%$ $0 \%$ | $\begin{array}{r}26 \% \\ 9 \% \\ 16 \% \\ 10 \% \\ \hline\end{array}$ |
| Non-CVD co-morbidities |  |  |
| Chronic kidney disease <br> Chronic obstructive pulmonary disease <br> Cancer <br> Chronic liver disease | $11 \%$ $24 \%$ $11 \%$ $1 \%$ | $\begin{array}{r}7 \% \\ 24 \% \\ 9 \% \\ 1 \% \\ \hline\end{array}$ |
| Psychosocial characteristics |  |  |
| Depression at diagnosis Anxiety at diagnosis | $\begin{array}{r} 14 \% \\ 7 \% \\ \hline \end{array}$ | $\begin{array}{r}17 \% \\ 8 \% \\ \hline\end{array}$ |
| Biomarkers |  |  |
| Heart rate (b.p.m.) <br> Creatinine (mmol/L) <br> White cell count ( $10^{9} / \mathrm{L}$ ) <br> Haemoglobin ( $\mathrm{g} / 100 \mathrm{ml}$ ) | $\begin{array}{r} 70 \\ 106 \\ 7.64 \\ 13.27 \end{array}$ | $\begin{array}{r} \hline 72 \\ 101 \\ 7.48 \\ 13.58 \\ \hline \end{array}$ |

Modelling lifetime costs and health outcomes for patients with stable coronary artery disease
Appendix F: Full Results by Risk Decile and Clinical Profiles
Section 1: Results by Risk Deciles

|  | Risk Decile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basecase | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 26.81 | 19.62 | 17.34 | 15.63 | 14.26 | 13.03 | 11.92 | 10.48 | 8.52 | 5.51 |
|  | (26.63 to 26.98) | (19.48 to 19.8) | (17.18 to 17.53) | (15.47 to 15.84) | (14.08 to 14.49) | (12.83 to 13.28) | (11.69 to 12.21) | (10.21 to 10.84) | (8.19 to 8.94) | (5.09 to 6.02) |
|  | 19.23 | 14.08 | 12.4 | 11.13 | 10.09 | 9.16 | 8.26 | 7.13 | 5.65 | 3.51 |
| QALYs* | (18.06 to 20.09) | (13.28 to 14.69) | (11.7 to 12.95) | (10.5 to 11.62) | (9.52 to 10.55) | (8.64 to 9.58) | (7.76 to 8.67) | (6.66 to 7.54) | (5.2 to 6.06) | (3.14 to 3.92) |
| QALYs** | 19.11 | 13.97 | 12.29 | 11.01 | 9.97 | 9.03 | 8.13 | 6.99 | 5.5 | 3.34 |
|  | (18.06 to 19.93) | (13.26 to 14.54) | (11.66 to 12.8) | (10.45 to 11.48) | (9.44 to 10.41) | (8.53 to 9.45) | (7.65 to 8.53) | (6.54 to 7.4) | (5.09 to 5.89) | (3.01 to 3.72) |
| Total Cost (£) | 116,888 | 81,490 | 73,057 | 68,102 | 64,521 | 62,034 | 61,435 | 59,446 | 54,345 | 43,020 |
|  | ( 64,743 to 168,032 ) | ( 54,858 to 108,206) | ( 53,809 to 92,411 ) | ( 53,588 to 83,062) | (53,054 to 76,141) | ( 53,567 to 71,316) | $(54,672$ to 68,506) | $(53,872$ to 65,167$)$ | $(49,316$ to 59,720) | ( 37,731 to 48,842) |
| CVD Specific Cost (£) | 71,943 | 52,034 | 47,681 | 45,251 | 43,438 | 42,266 | 42,301 | 41,366 | 38,410 | 31,199 |
|  | (28,717 to 113,960) | $(29,821$ to 73,886$)$ | $(31,396$ to 63,800$)$ | ( 32,763 to 57,894 ) | (33,616 to 53,321) | $(34,888$ to 50,204$)$ | $(36,394$ to 48,452) | $(36,735$ to 46,148) | $(34,488$ to 42,629) | ( 27,373 to 35,474 ) |
| CHD Specific Cost ( $£$ ) | 46,921 | 36,069 | 33,892 | 32,693 | 31,741 | 30,944 | 30,793 | 29,885 | 27,533 | 22,324 |
|  | (12,629 to 79,870) | (18,387 to 53,211) | $(20,897$ to 46,637) | ( 22,676 to 42,679) | ( 23,884 to 39,629 ) | (24,902 to 37,252) | $(26,031$ to 35,683$)$ | (26,263 to 33,699) | $(24,555$ to 30,719) | $(19,620$ to 25,304) |
| Discounted Life Years | 16.77 | 13.66 | 12.5 | 11.56 | 10.76 | 9.99 | 9.26 | 8.27 | 6.9 | 4.67 |
|  | (16.69 to 16.85) | (13.58 to 13.75) | (12.41 to 12.61) | (11.46 to 11.68) | (10.65 to 10.89) | (9.87 to 10.15) | (9.11 to 9.44) | (8.1 to 8.5 ) | (6.67 to 7.17) | (4.38 to 5.01) |
| Discounted QALYs* | 12.09 | 9.84 | 8.97 | 8.25 | 7.63 | 7.04 | 6.42 | 5.64 | 4.58 | 2.98 |
|  | (11.46 to 12.6) | (9.33 to 10.24) | (8.51 to 9.34) | (7.82 to 8.6) | (7.23 to 7.96) | (6.66 to 7.34) | (6.06 to 6.73) | (5.3 to 5.94) | (4.25 to 4.88) | (2.7 to 3.28) |
| Discounted QALYs** | 12.04 | 9.77 | 8.9 | 8.18 | 7.55 | 6.95 | 6.34 | 5.55 | 4.47 | 2.85 |
|  | (11.45 to 12.53) | (9.31 to 10.17) | (8.47 to 9.25) | (7.78 to 8.51) | (7.17 to 7.87) | (6.58 to 7.25) | (5.98 to 6.63) | (5.21 to 5.84) | (4.16 to 4.76) | (2.6 to 3.13) |
| Discounted Total Cost (£) | 62,210 | 50,864 | 48,046 | 46,535 | 45,429 | 44,785 | 45,283 | 44,903 | 42,436 | 35,549 |
|  | (33,724 to 90,043) | (34,490 to 67,270) | (35,660 to 60,475) | ( 37,121 to 56,164 ) | $(37,877$ to 53,081$)$ | $(39,150$ to 50,876$)$ | ( 40,798 to 49,797) | (41,160 to 48,628) | $(38,855$ to 46,110) | ( 31,679 to 39,615) |
| Discounted CVD Cost ( $£$ ) | 37,857 | 32,331 | 31,288 | 30,896 | 30,584 | 30,531 | 31,211 | 31,281 | 30,024 | 25,801 |
|  | (14,738 to 60,313) | (18,671 to 45,751) | (21,030 to 41,484) | ( 22,893 to 38,965 ) | ( 24,097 to 37,099 ) | $(25,641$ to 35,726$)$ | ( 27,360 to 35,214 ) | ( 28,197 to 34,361 ) | $(27,337$ to 32,944$)$ | ( 22,935 to 28,739) |
| Discounted CHD Cost ( $£$ ) | 25,316 | 22,868 | 22,639 | 22,672 | 22,657 | 22,619 | 22,946 | 22,778 | 21,646 | 18,522 |
|  | (7,118 to 42,948) | $(12,077$ to 33,360$)$ | $(14,464$ to 30,648$)$ | ( 16,260 to 29,078) | $(17,508$ to 27,823$)$ | $(18,653$ to 26,761$)$ | $(19,867$ to 26,107) | ( 20,345 to 25,211) | (19,569 to 23,841) | ( 16,462 to 20,605) |
| Time to first event (years) | 24.55 | 17.8 | 15.62 | 13.98 | 12.67 | 11.49 | 10.43 | 9 | 7.06 | 4.07 |
|  | (24.31 to 24.76) | (17.64 to 17.95) | (15.47 to 15.75) | (13.85 to 14.11) | (12.54 to 12.8) | (11.36 to 11.62) | (10.29 to 10.57) | (8.85 to 9.15) | (6.91 to 7.22) | (3.9 to 4.23) |
| MI as primary endpoint (\%) <br> Ischaemic stroke as primary endpoint (\%) | 6 | 7.11 | 8.06 | 8.94 | 9.84 | 10.7 | 11.59 | 12.33 | 12.89 | 14.3 |
|  | (5.55 to 6.49) | (6.73 to 7.49) | (7.72 to 8.43) | (8.61 to 9.29) | (9.5 to 10.15) | (10.39 to 11.01) | (11.28 to 11.9) | (12.01 to 12.64) | (12.57 to 13.22) | (13.87 to 14.73) |
|  | 5.51 | 5.7 | 6.06 | 6.39 | 6.8 | 7.37 | 8.29 | 9.31 | 10.07 | 9.97 |
|  | (5.01 to 6.06) | (5.34 to 6.11) | (5.73 to 6.43) | (6.07 to 6.74) | (6.48 to 7.11) | (7.05 to 7.68) | (7.95 to 8.63) | (8.96 to 9.68) | (9.72 to 10.43) | (9.58 to 10.38) |
| Haemorragic stroke as primary | 0.67 | 0.67 | 0.71 | 0.72 | 0.74 | 0.76 | 0.79 | 0.78 | 0.7 | 0.48 |
| endpoint (\%) | (0.48 to 0.89) | (0.54 to 0.81) | (0.59 to 0.82) | (0.62 to 0.84$)$ | (0.65 to 0.84) | (0.67 to 0.86) | (0.7 to 0.89) | (0.69 to 0.88) | (0.61 to 0.81) | (0.4 to 0.57) |
| CVD Mortality (\%) | 4.48 | 6.6 | 8.52 | 10.39 | 12.63 | 15.48 | 20.17 | 26.29 | 34.46 | 45.95 |
|  | (3.45 to 5.55) | (5.45 to 7.51) | (7.22 to 9.47) | (8.97 to 11.44) | (11.07 to 13.85) | (13.78 to 17.07) | (18.17 to 22.63) | (23.61 to 30.18) | (30.65 to 39.32) | (41.34 to 50.07) |
| Non-CVD Mortality (\%) | 95.46 | 93.4 | 91.48 | 89.6 | 87.37 | 84.52 | 79.83 | 73.71 | 65.54 | 54.05 |
|  | (94.4 to 96.49) | (92.49 to 94.55) | (90.53 to 92.78) | (88.56 to 91.03) | (86.15 to 88.93) | (82.93 to 86.22) | (77.37 to 81.83) | (69.82 to 76.39) | (60.68 to 69.35) | (49.93 to 58.66) |
| * 1 year decrement post event <br> ** constant decrement post event |  |  |  |  |  |  |  |  |  |  |


| Scenario HR=0.9 | Risk Decile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 26.82 | 19.65 | 17.38 | 15.69 | 14.33 | 13.12 | 12.05 | 10.64 | 8.7 | 5.65 |
|  | (26.65 to 26.98) | (19.52 to 19.81) | (17.24 to 17.56) | (15.54 to 15.88) | (14.17 to 14.55) | (12.94 to 13.36) | (11.84 to 12.33) | (10.39 to 10.98) | (8.38 to 9.1) | (5.26 to 6.14) |
| QALYs* | 19.23 | 14.1 | 12.44 | 11.18 | 10.15 | 9.22 | 8.35 | 7.24 | 5.77 | 3.6 |
|  | (18.06 to 20.1) | (13.31 to 14.71) | (11.73 to 12.98) | (10.55 to 11.67) | (9.58 to 10.6) | (8.7 to 9.65) | (7.85 to 8.76) | (6.77 to 7.65) | (5.32 to 6.17) | (3.23 to 4) |
| QALYs** | 19.13 | 14 | 12.33 | 11.07 | 10.04 | 9.11 | 8.23 | 7.12 | 5.63 | 3.44 |
|  | (18.06 to 19.95) | (13.28 to 14.58) | (11.7 to 12.84) | (10.5 to 11.53) | (9.51 to 10.47) | (8.61 to 9.53) | (7.75 to 8.63) | (6.66 to 7.51) | (5.23 to 6.02) | (3.12 to 3.81) |
| Total Cost (£) | 116,326 | $\begin{array}{r} 81,135 \\ (54,510 \text { to } 107,802) \end{array}$ | 72,807 | 67,944 | 64,464 | 62,119 | 61,757 | 60,001 | 55,094 | 43,676 |
|  | ( 64,272 to 167,320 ) |  | (53,450 to 92,149) | ( 53,306 to 82,935) | ( 52,855 to 76,119) | (53,512 to 71,443) | ( 54,884 to 68,906) | ( 54,431 to 65,716) | $(50,093$ to 60,425$)$ | $(38,531$ to 49,287) |
| CVD Specific Cost ( $£$ ) | 71,461 | 51,699 | 47,415 | 45,047 | 43,302 | $\begin{array}{r} 42,226 \\ (34,724 \text { to } 50,204) \end{array}$ | $\begin{array}{r} 42,422 \\ (36,418 \text { to } 48,621) \end{array}$ | 41,648 | 38,835$(34,907$ to 43,039$)$ | 31,585$(27,807$ to 35,723$)$ |
|  | ( 28,231 to 113,373 ) | (29,429 to 73,512) | $(31,048$ to 63,543$)$ | ( 32,473 to 57,691 ) | ( 33,392 to 53,276) |  |  | $(36,976$ to 46,488$)$ |  |  |
| CHD Specific Cost (£) | 46,551 | 35,800 | 33,670 | 32,513 | 31,610 | 30,882 | 30,844 | 30,050 | 27,801 | 22,571 |
|  | (12,262 to 79,418) | (18,125 to 52,914) | $(20,647$ to 46,416$)$ | ( 22,469 to 42,510 ) | $(23,696$ to 39,506) | ( 24,783 to 37,211 ) | $(26,004$ to 35,739$)$ | (26,380 to 33,921) | (24,778 to 30,944) | $(19,899$ to 25,446$)$ |
| Discounted Life Years | 16.78 | 13.68 | 12.53 | 11.6 | 10.81 | 10.06 | 9.35 | 8.39 | 7.03 | 4.78 |
|  | (16.71 to 16.85) | (13.61 to 13.77) | (12.45 to 12.63) | (11.51 to 11.71) | (10.71 to 10.94) | (9.94 to 10.2) | (9.21 to 9.52) | (8.22 to 8.6) | (6.81 to 7.28) | (4.5 to 5.11) |
| Discounted QALYs* | 12.1 | 9.85(9.35 to 10.26) | $\begin{array}{r} 8.99 \\ (8.53 \text { to } 9.36) \end{array}$ | $\begin{array}{r} 8.28 \\ (7.85 \text { to } 8.63) \end{array}$ | $\begin{array}{r} 7.67 \\ (7.27 \text { to } 8) \end{array}$ | $\begin{array}{r} 7.08 \\ \text { (6.7 to } 7.39 \text { ) } \end{array}$ | $\begin{array}{r} 6.49 \\ \text { (6.13 to } 6.79 \text { ) } \end{array}$ | $\begin{array}{r} 5.72 \\ (5.37 \text { to } 6.02 \text { ) } \end{array}$ | $\begin{array}{r} 4.66 \\ (4.33 \text { to } 4.96) \end{array}$ | $\begin{array}{r} 3.05 \\ (2.77 \text { to } 3.35 \text { ) } \end{array}$ |
|  | (11.47 to 12.61) |  |  |  |  |  |  |  |  |  |
| Discounted QALYs** | 12.05 | 9.79 | 8.93 | $\begin{array}{r} 8.22 \\ \text { (7.81 to } 8.55 \text { ) } \end{array}$ | $\begin{array}{r} 7.6 \\ \text { (7.22 to } 7.91 \text { ) } \end{array}$ | $\begin{array}{r} 7.01 \\ \text { (6.64 to } 7.31 \text { ) } \end{array}$ | $\begin{array}{r} 6.41 \\ \text { (6.05 to } 6.7 \text { ) } \end{array}$ | $\begin{array}{r} 5.63 \\ \text { (5.29 to } 5.92 \text { ) } \end{array}$ | $\begin{array}{r} 4.56 \\ (4.25 \text { to } 4.85) \end{array}$ | $\begin{array}{r} 2.93 \\ (2.68 \text { to } 3.21) \end{array}$ |
|  | (11.46 to 12.54) | (9.33 to 10.19) | (8.5 to 9.29) |  |  |  |  |  |  |  |
| Discounted Total Cost (£) | 61,970 | 50,675 | $\begin{array}{r} 47,897 \\ (35,481 \text { to } 60,325) \end{array}$ | $\begin{array}{r} 46,427 \\ (36,937 \text { to } 56,057) \end{array}$ | $\begin{array}{r} 45,373 \\ (37,768 \text { to } 53,058) \end{array}$ | $\begin{array}{r} 44,806 \\ (39,089 \text { to } 50,926) \end{array}$ | $\begin{array}{r} 45,446 \\ (40,888 \text { to } 50,039) \end{array}$ | $\begin{array}{r} 45,219 \\ (41,455 \text { to } 48,916) \end{array}$ | $\begin{array}{r} 42,906 \\ (39,371 \text { to } 46,580) \end{array}$ | $\begin{array}{r} 36,032 \\ (32,152 \text { to } 40,063) \end{array}$ |
|  | (33,482 to 89,767) | $(34,265$ to 67,062$)$ |  |  |  |  |  |  |  |  |
| Discounted CVD Cost ( $£$ ) | 37,639 | $\begin{array}{r} 32,144 \\ (18,461 \text { to } 45,550) \end{array}$ | $\begin{array}{r} 31,123 \\ (20,815 \text { to } 41,320) \end{array}$ | $\begin{array}{r} 30,757 \\ (22,693 \text { to } 38,849) \end{array}$ | $\begin{array}{r} 30,477 \\ (23,969 \text { to } 37,015) \end{array}$ | $\begin{array}{r} 30,476 \\ (25,520 \text { to } 35,707) \end{array}$ | $\begin{array}{r} 31,250 \\ (27,342 \text { to } 35,246) \end{array}$ | $\begin{array}{r} 31,423 \\ (28,289 \text { to } 34,525) \end{array}$ | 30,276$(27,547$ to 33,156$)$ | $\begin{array}{r} 26,077 \\ (23,251 \text { to } 28,952) \end{array}$ |
|  | (14,517 to 60,073) |  |  |  |  |  |  |  |  |  |
| Discounted CHD Cost ( $£$ ) | 25,144 | $\begin{array}{r} 22,715 \\ (11,922 \text { to } 33,208) \end{array}$ | $\begin{array}{r} 22,501 \\ (14,300 \text { to } 30,506) \end{array}$ | $\begin{array}{r} 22,552 \\ (16,095 \text { to } 28,937) \end{array}$ | $\begin{array}{r} 22,559 \\ (17,391 \text { to } 27,734) \end{array}$ | $\begin{array}{r} 22,558 \\ (18,566 \text { to } 26,735) \end{array}$ | $\begin{array}{r} 22,951 \\ (19,822 \text { to } 26,116) \end{array}$ | $\begin{array}{r} 22,856 \\ (20,366 \text { to } 25,330) \end{array}$ | $\begin{array}{r} 21,803 \\ (19,688 \text { to } 24,006) \end{array}$ | $\begin{array}{r} 18,697 \\ (16,654 \text { to } 20,772) \end{array}$ |
|  | (6,949 to 42,762) |  |  |  |  |  |  |  |  |  |
| Time to first event (years) | 24.76 | $\begin{array}{r} 17.99 \\ (17.84 \text { to } 18.13) \end{array}$ | $\begin{array}{r} 15.81 \\ (15.67 \text { to } 15.93) \end{array}$ | $\begin{array}{r} 14.18 \\ (14.06 \text { to } 14.31) \end{array}$ | $\begin{array}{r} 12.88 \\ (12.76 \text { to } 13) \end{array}$ | $\begin{array}{r} 11.72 \\ \text { (11.59 to } 11.84 \text { ) } \end{array}$ | $\begin{array}{r} 10.68 \\ (10.55 \text { to } 10.81) \end{array}$ | $\begin{array}{r} 9.28 \\ (9.13 \text { to } 9.42) \end{array}$ | $\begin{array}{r} 7.35 \\ \text { (7.19 to } 7.5 \text { ) } \end{array}$ | 4.3(4.13 to 4.47 ) |
|  | (24.53 to 24.96) |  |  |  |  |  |  |  |  |  |
|  | 5.44 | $\begin{array}{r} 6.46 \\ (6.11 \text { to } 6.81) \end{array}$ | $\begin{array}{r} 7.33 \\ (7.02 \text { to } 7.67) \end{array}$ | $\begin{array}{r} 8.15 \\ \text { ( } 7.84 \text { to } 8.47 \text { ) } \end{array}$ | $\begin{array}{r} 8.98 \\ \text { (8.67 to } 9.27 \text { ) } \end{array}$ | $\begin{array}{r} 9.8 \\ \text { (9.5 to } 10.08 \text { ) } \end{array}$ | $\begin{array}{r} 10.65 \\ (10.36 \text { to } 10.94) \end{array}$ | $\begin{array}{r} 11.38 \\ (11.09 \text { to } 11.68 \text { ) } \end{array}$ | $\begin{array}{r} 11.99 \\ (11.68 \text { to } 12.31 \text { ) } \end{array}$ | $\begin{array}{r} 13.47 \\ (13.05 \text { to } 13.87) \end{array}$ |
| MI as primary endpoint (\%) | (5.03 to 5.89) |  |  |  |  |  |  |  |  |  |
| Ischaemic stroke as primary endpoint (\%) | 5 | $\begin{array}{r} 5.18 \\ (4.86 \text { to } 5.56) \end{array}$ | $\begin{array}{r} 5.52 \\ (5.21 \text { to } 5.87) \end{array}$ | $\begin{array}{r} 5.84 \\ (5.54 \text { to } 6.16) \end{array}$ | $\begin{array}{r} 6.22 \\ (5.92 \text { to } 6.51) \end{array}$ | $\begin{array}{r} 6.76 \\ (6.46 \text { to } 7.05) \end{array}$ | $\begin{array}{r} 7.64 \\ \text { (7.32 to 7.97) } \end{array}$ | $\begin{array}{r} 8.64 \\ \text { (8.3 to } 8.99 \text { ) } \end{array}$ | 9.43 | 9.48 |
|  | (4.54 to 5.51) |  |  |  |  |  |  |  | (9.08 to 9.78) | (9.1 to 9.89) |
| Haemorragic stroke as primary endpoint (\%) | 0.67 | $\begin{array}{r} 0.68 \\ (0.55 \text { to } 0.82) \end{array}$ | $\begin{array}{r} 0.71 \\ (0.6 \text { to } 0.84) \end{array}$ | $\begin{array}{r} 0.73 \\ (0.63 \text { to } 0.85) \end{array}$ | $\begin{array}{r} 0.75 \\ (0.66 \text { to } 0.86) \end{array}$ | $\begin{array}{r} 0.77 \\ (0.68 \text { to } 0.87) \end{array}$ | $\begin{array}{r} 0.81 \\ (0.72 \text { to } 0.91) \end{array}$ | $\begin{array}{r} 0.8 \\ \text { (0.71 to } 0.9 \text { ) } \end{array}$ | $\begin{array}{r} 0.73 \\ (0.64 \text { to } 0.84) \end{array}$ | $\begin{array}{r} 0.51 \\ (0.43 \text { to } 0.6) \end{array}$ |
|  | (0.49 to 0.9) |  |  |  |  |  |  |  |  |  |
|  | 4.09 | 6.02 | 7.79 | 9.52 | 11.59 | 14.24 | 18.65 | 24.46 | 32.35 | 43.8 |
| CVD Mortality (\%) | (3.14 to 5.07) | (4.97 to 6.86) | (6.59 to 8.66) | (8.21 to 10.49) | (10.15 to 12.72) | (12.67 to 15.73) | (16.77 to 20.96) | (21.94 to 28.11) | (28.74 to 36.88) | (39.38 to 47.72) |
|  | 95.85 | 93.98 | 92.21 | 90.48 | 88.41 | 85.76 | 81.35 | 75.54 | 67.65 | 56.2 |
| Non-CVD Mortality (\%) | (94.88 to 96.79) | (93.14 to 95.03) | (91.34 to 93.41) | (89.51 to 91.79) | (87.28 to 89.85) | (84.27 to 87.33) | (79.04 to 83.23) | (71.89 to 78.06) | (63.12 to 71.26) | (52.28 to 60.62) |

[^0]| Scenario HR=0.8 | Risk Decile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 26.83 | 19.68 | 17.43 | 15.75 | 14.41 | 13.22 | 12.19 | 10.81 | 8.89 | 5.81 |
|  | (26.67 to 26.97) | (19.56 to 19.83) | (17.3 to 17.59) | (15.61 to 15.93) | (14.26 to 14.61) | (13.06 to 13.44) | (11.99 to 12.44) | (10.58 to 11.12) | (8.59 to 9.26) | (5.43 to 6.27) |
|  | 19.24 | 14.12 | 12.47 | 11.22 | 10.2 | 9.3 | 8.45 | 7.36 | 5.89 | 3.71 |
| QALYs* | (18.07 to 20.11) | (13.34 to 14.73) | (11.77 to 13.01) | (10.59 to 11.71) | (9.63 to 10.65) | (8.77 to 9.72) | (7.95 to 8.86) | (6.88 to 7.77) | (5.45 to 6.29) | (3.34 to 4.1) |
| QALYs** | 19.14 | 14.03 | 12.37 | 11.12 | 10.1 | 9.19 | 8.34 | 7.24 | 5.77 | 3.56 |
|  | (18.06 to 19.97) | (13.31 to 14.62) | (11.74 to 12.88) | (10.55 to 11.59) | (9.57 to 10.53) | (8.7 to 9.6) | (7.85 to 8.74) | (6.79 to 7.63) | (5.36 to 6.15) | (3.23 to 3.92) |
| Total Cost (£) | 115,756 | 80,773 | 72,551 | 67,781 | 64,405 | 62,207 | 62,097 | 60,594 | 55,914 | 44,438 |
|  | (63,795 to 166,598) | ( 54,120 to 107,389) | $(53,082$ to 91,896) | $(53,014$ to 82,803$)$ | $(52,651$ to 76,101$)$ | (53,455 to 71,622) | (55,108 to 69,331) | ( 54,973 to 66,325) | ( 50,957 to 61,211) | ( 39,264 to 49,876) |
| CVD Specific Cost (£) | 70,971 | 51,358 | 47,143 | 44,839 | 43,163 | 42,185 | 42,551 | 41,950 | 39,303 | 32,038 |
|  | ( 27,738 to 112,777 ) | $(29,040$ to 73,130$)$ | (30,692 to 63,247) | $(32,205$ to 57,488$)$ | (33,161 to 53,177) | (34,553 to 50,181) | $(36,444$ to 48,767) | ( 37,232 to 46,828) | $(35,345$ to 43,456) | ( 28,346 to 36,032 ) |
| CHD Specific Cost (f) | 46,175 | 35,525 | 33,442 | 32,330 | 31,475 | 30,817 | 30,900 | 30,228 | 28,096 | 22,861 |
|  | (11,891 to 78,959) | (17,858 to 52,611 ) | (20,394 to 46,174) | $(22,210$ to 42,337$)$ | $(23,530$ to 39,414$)$ | ( 24,670 to 37,225 ) | ( 25,961 to 35,827 ) | ( 26,517 to 34,109 ) | ( 25,049 to 31,237) | ( 20,245 to 25,719) |
| Discounted Life Years | 16.79 | 13.7 | 12.56 | 11.64 | 10.86 | 10.13 | 9.44 | 8.5 | 7.16 | 4.91 |
|  | (16.73 to 16.86) | (13.64 to 13.78) | (12.49 to 12.66) | (11.56 to 11.75) | (10.77 to 10.98) | (10.02 to 10.26) | (9.31 to 9.6) | (8.35 to 8.7) | (6.96 to 7.4) | (4.64 to 5.21) |
| Discounted QALYs* | 12.11 | 9.87 | 9.01 | 8.31 | 7.71 | 7.13 | 6.55 | 5.8 | 4.75 | 3.13 |
|  | (11.47 to 12.62) | (9.36 to 10.28) | (8.55 to 9.39) | (7.88 to 8.66) | (7.3 to 8.03) | (6.75 to 7.44) | (6.19 to 6.85) | (5.45 to 6.1) | (4.42 to 5.05) | (2.85 to 3.42) |
| Discounted QALYs** | 12.06 | 9.82 | 8.96 | 8.25 | 7.64 | 7.06 | 6.48 | 5.72 | 4.66 | 3.02 |
|  | (11.47 to 12.56) | (9.35 to 10.21) | (8.52 to 9.32) | (7.85 to 8.59) | (7.26 to 7.96) | (6.69 to 7.36) | (6.13 to 6.78) | (5.38 to 6.01) | (4.35 to 4.94) | (2.77 to 3.3) |
| Discounted Total Cost ( $£$ ) | 61,727 | 50,483 | 47,745 | 46,317 | 45,314 | 44,829 | 45,617 | 45,555 | 43,414 | 36,583 |
|  | (33,236 to 89,489) | (34,036 to 66,850) | (35,300 to 60,172) | $(36,748$ to 55,994$)$ | $(37,691$ to 53,033) | (39,027 to 51,018) | $(41,061$ to 50,263$)$ | $(41,805$ to 49,261) | $(39,829$ to 47,104) | ( 32,756 to 40,495) |
| Discounted CVD Cost ( $£$ ) | 37,418 | 31,953 | 30,956 | 30,615 | 30,368 | 30,419 | 31,291 | 31,575 | 30,551 | 26,395 |
|  | (14,294 to 59,830) | (18,248 to 45,346) | ( 20,596 to 41,151) | ( 22,490 to 38,731 ) | ( 23,839 to 36,906 ) | (25,391 to 35,688) | ( 27,335 to 35,254 ) | ( 28,357 to 34,715 ) | ( 27,749 to 33,423 ) | ( 23,621 to 29,239 ) |
| Discounted CHD Cost ( $£$ ) | 24,970 | 22,560 | 22,361 | 22,428 | 22,459 | 22,494 | 22,957 | 22,941 | 21,974 | 18,899 |
|  | $(6,780$ to 42,575$)$ | (11,764 to 33,053) | ( 14,139 to 30,360) | (15,925 to 28,821) | $(17,272$ to 27,665) | (18,470 to 26,702) | (19,776 to 26,161) | $(20,424$ to 25,455$)$ | (19,859 to 24,145) | (16,854 to 20,921) |
| Time to first event (years) | 24.97 | 18.18 | 16.01 | 14.39 | 13.09 | 11.95 | 10.94 | 9.57 | 7.65 | 4.56 |
|  | (24.76 to 25.15) | (18.04 to 18.31) | (15.88 to 16.12) | (14.27 to 14.51) | (12.98 to 13.21) | (11.83 to 12.07) | (10.81 to 11.07) | (9.43 to 9.71) | (7.49 to 7.81) | (4.38 to 4.73) |
|  | 4.87 | 5.79 | 6.58 | 7.33 | 8.1 | 8.85 | 9.66 | 10.39 | 11.03 | 12.56 |
| MI as primary endpoint (\%) <br> Ischaemic stroke as primary endpoint (\%) | (4.5 to 5.28) | (5.48 to 6.11) | (6.3 to 6.9) | (7.05 to 7.63) | (7.81 to 8.36) | (8.58 to 9.12) | (9.39 to 9.94) | (10.11 to 10.67) | (10.73 to 11.33) | (12.16 to 12.94) |
|  | 4.48 | 4.65 | 4.97 | 5.26 | 5.62 | 6.13 | 6.96 | 7.92 | 8.72 | 8.93 |
|  | (4.07 to 4.94) | (4.36 to 5) | (4.69 to 5.28) | (4.99 to 5.56 ) | (5.35 to 5.89) | (5.85 to 6.4) | (6.66 to 7.26) | (7.6 to 8.26) | (8.39 to 9.07) | (8.56 to 9.33) |
| Haemorragic stroke as primary endpoint (\%) | 0.68 | 0.69 | 0.72 | 0.75 | 0.76 | 0.79 | 0.83 | 0.83 | 0.76 | 0.54 |
|  | (0.49 to 0.9) | (0.55 to 0.83) | (0.61 to 0.85 ) | (0.64 to 0.86) | (0.67 to 0.87) | (0.7 to 0.89) | (0.74 to 0.93) | (0.73 to 0.93 ) | (0.67 to 0.88) | (0.45 to 0.64 ) |
| CVD Mortality (\%) | 3.7 | 5.43 | 7.04 | 8.62 | 10.51 | 12.95 | 17.04 | 22.49 | 30.02 | 41.36 |
|  | (2.84 to 4.57) | (4.48 to 6.2) | (5.96 to 7.84) | (7.43 to 9.5) | (9.2 to 11.54) | (11.52 to 14.32) | (15.31 to 19.19) | (20.16 to 25.85) | (26.63 to 34.22) | (37.16 to 45.06) |
| Non-CVD Mortality (\%) | 96.25 | 94.56 | 92.96 | 91.38 | 89.49 | 87.05 | 82.96 | 77.5 | 69.98 | 58.64 |
|  | (95.37 to 97.1) | (93.8 to 95.52) | (92.16 to 94.04) | (90.5 to 92.57) | (88.46 to 90.8) | (85.68 to 88.48) | (80.81 to 84.69) | (74.15 to 79.84) | (65.78 to 73.37) | (54.94 to 62.84) |
| * 1 year decrement post event <br> ** constant decrement post event |  |  |  |  |  |  |  |  |  |  |


|  | Risk Decile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scenario HR=0.7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|  | 26.83 | 19.71 | 17.47 | 15.81 | 14.49 | 13.33 | 12.33 | 10.99 | 9.1 | 5.99 |
| Life years | (26.69 to 26.97) | (19.6 to 19.84) | (17.35 to 17.62) | (15.68 to 15.97) | (14.36 to 14.67) | (13.18 to 13.53) | (12.15 to 12.56) | (10.77 to 11.28) | (8.82 to 9.44) | (5.63 to 6.43) |
|  | 19.25 | 14.14 | 12.5 | 11.26 | 10.26 | 9.37 | 8.55 | 7.49 | 6.03 | 3.82 |
| QALYs* | (18.08 to 20.11) | (13.36 to 14.75) | (11.8 to 13.04) | (10.63 to 11.75) | (9.68 to 10.71) | (8.84 to 9.79) | (8.04 to 8.95) | (7.01 to 7.88) | (5.59 to 6.42) | (3.46 to 4.2) |
|  | 19.16 | 14.06 | 12.42 | 11.18 | 10.17 | 9.28 | 8.45 | 7.38 | 5.92 | 3.69 |
| QALYs** | (18.08 to 19.99) | (13.34 to 14.65) | (11.77 to 12.93) | (10.6 to 11.65) | (9.64 to 10.6) | (8.78 to 9.68) | (7.97 to 8.85) | (6.92 to 7.76) | (5.51 to 6.29) | (3.36 to 4.04) |
|  | 115,177 | 80,405 | 72,288 | 67,615 | 64,345 | 62,300 | 62,454 | 61,227 | 56,812 | 45,327 |
| Total Cost (£) | (63,233 to 165,863) | ( 53,673 to 106,949) | $(52,706$ to 91,587) | $(52,735$ to 82,667) | $(52,458$ to 76,100) | $(53,397$ to 71,782) | ( 55,341 to 69,736) | ( 55,536 to 66,892) | ( 51,829 to 62,081 ) | $(40,267$ to 50,662$)$ |
|  | 70,475 | 51,010 | 46,865 | 44,624 | 43,019 | 42,144 | 42,688 | 42,274 | 39,817 | 32,570 |
| CVD Specific Cost (£) | ( 27,238 to 112,172 ) | $(28,659$ to 72,740$)$ | (30,328 to 63,028) | $(31,910$ to 57,279$)$ | ( 32,975 to 53,046 ) | $(34,377$ to 50,231$)$ | ( 36,474 to 48,945) | $(37,502$ to 47,186) | ( 35,815 to 43,938 ) | $(28,996$ to 36,421$)$ |
|  | 45,795 | 35,246 | 33,210 | 32,141 | 31,337 | 30,751 | 30,959 | 30,419 | 28,422 | 23,203 |
| CHD Specific Cost (£) | $(11,515$ to 78,492$)$ | (17,587 to 52,302) | $(20,136$ to 45,964) | (21,989 to 42,159) | ( 23,351 to 39,320) | $(24,552$ to 37,240$)$ | ( 25,924 to 35,994) | $(26,620$ to 34,296$)$ | ( 25,320 to 31,527 ) | $(20,580$ to 25,947) |
|  | 16.8 | 13.73 | 12.59 | 11.68 | 10.92 | 10.19 | 9.53 | 8.62 | 7.31 | 5.05 |
| Discounted Life Years | (16.74 to 16.86) | (13.67 to 13.8) | (12.53 to 12.68) | (11.61 to 11.78) | (10.83 to 11.02) | (10.1 to 10.32) | (9.42 to 9.68) | (8.48 to 8.8) | (7.12 to 7.52) | (4.8 to 5.34) |
|  | 12.12 | 9.89 | 9.04 | 8.34 | 7.75 | 7.18 | 6.62 | 5.88 | 4.85 | 3.22 |
| Discounted QALYs* | (11.48 to 12.62) | (9.38 to 10.29) | (8.58 to 9.42) | (7.91 to 8.69) | (7.34 to 8.07) | (6.8 to 7.49) | (6.25 to 6.92) | (5.53 to 6.18) | (4.51 to 5.14) | (2.95 to 3.51) |
|  | 12.08 | 9.84 | 8.99 | 8.29 | 7.69 | 7.12 | 6.55 | 5.81 | 4.77 | 3.12 |
| Discounted QALYs** | (11.48 to 12.57) | (9.37 to 10.24) | (8.55 to 9.36) | (7.88 to 8.63) | (7.3 to 8.01) | (6.75 to 7.42) | (6.2 to 6.85) | (5.47 to 6.1) | (4.45 to 5.05) | (2.87 to 3.38 ) |
|  | 61,482 | 50,287 | 47,589 | 46,203 | 45,254 | 44,852 | 45,796 | 45,911 | 43,966 | 37,216 |
| Discounted Total Cost ( $£$ ) | (32,989 to 89,207) | (33,804 to 66,634) | ( 35,114 to 60,015) | $(36,555$ to 55,929$)$ | $(37,557$ to 53,008) | ( 38,964 to 51,038) | ( 41,154 to 50,445) | (42,152 to 49,609) | ( 40,329 to 47,635) | $(33,401$ to 41,056) |
|  | 37,194 | 31,760 | 30,785 | 30,470 | 30,256 | 30,360 | 31,335 | 31,738 | 30,850 | 26,762 |
| Discounted CVD Cost ( $£$ ) | $(14,078$ to 59,582$)$ | $(18,041$ to 45,139$)$ | ( 20,372 to 40,974) | ( 22,281 to 38,569 ) | ( 23,707 to 36,829 ) | $(25,265$ to 35,669$)$ | ( 27,307 to 35,354) | ( 28,495 to 34,931 ) | ( 28,072 to 33,706 ) | ( 24,002 to 29,540) |
|  | 24,794 | 22,403 | 22,218 | 22,302 | 22,356 | 22,429 | 22,965 | 23,031 | 22,161 | 19,133 |
| Discounted CHD Cost (£) | (6,608 to 42,411) | (11,605 to 32,895) | $(13,976$ to 30,212$)$ | ( 15,752 to 28,716) | (17,139 to 27,583) | $(18,374$ to 26,666) | $(19,726$ to 26,217) | ( 20,502 to 25,571) | (19,992 to 24,353) | ( 17,135 to 21,134) |
|  | 25.19 | 18.38 | 16.21 | 14.6 | 13.31 | 12.19 | 11.22 | 9.88 | 7.97 | 4.84 |
| Time to first event (years) | (25 to 25.35) | (18.25 to 18.49) | (16.09 to 16.32) | (14.49 to 14.71) | (13.21 to 13.42) | (12.08 to 12.3) | (11.09 to 11.34) | (9.73 to 10.01) | (7.82 to 8.13) | (4.66 to 5.02) |
|  | 4.3 | 5.11 | 5.82 | 6.5 | 7.19 | 7.88 | 8.63 | 9.33 | 9.99 | 11.55 |
| MI as primary endpoint (\%) | (3.97 to 4.65) | (4.83 to 5.4) | (5.57 to 6.11) | (6.24 to 6.76) | (6.93 to 7.43) | (7.63 to 8.12) | (8.38 to 8.89) | (9.07 to 9.6) | (9.72 to 10.27) | (11.17 to 11.92) |
| Ischaemic stroke as primary endpoint (\%) | 3.96 | 4.11 | 4.4 | 4.67 | 5 | 5.47 | 6.24 | 7.15 | 7.96 | 8.31 |
|  | (3.59 to 4.36) | (3.85 to 4.42) | (4.15 to 4.69) | (4.43 to 4.94) | (4.76 to 5.24) | (5.22 to 5.71) | (5.97 to 6.52) | (6.85 to 7.46) | (7.64 to 8.28) | (7.95 to 8.69) |
| Haemorragic stroke as primary endpoint (\%) | 0.69 | 0.7 | 0.73 | 0.76 | 0.78 | 0.8 | 0.85 | 0.85 | 0.8 | 0.57 |
|  | (0.49 to 0.91) | (0.56 to 0.84$)$ | (0.62 to 0.86 ) | (0.65 to 0.87) | (0.68 to 0.89 ) | (0.71 to 0.91) | (0.75 to 0.95) | (0.75 to 0.96) | (0.7 to 0.91) | (0.48 to 0.68) |
| CVD Mortality (\%) | 3.29 | 4.83 | 6.27 | 7.68 | 9.39 | 11.61 | 15.34 | 20.38 | 27.47 | 38.57 |
|  | (2.53 to 4.07) | (3.98 to 5.52) | (5.3 to 6.98) | (6.62 to 8.48) | (8.21 to 10.33) | (10.31 to 12.85) | (13.79 to 17.31) | (18.25 to 23.45) | (24.35 to 31.3) | (34.65 to 42.03) |
|  | 96.65 | 95.17 | 93.73 | 92.32 | 90.61 | 88.39 | 84.66 | 79.62 | 72.53 | 61.43 |
| Non-CVD Mortality (\%) | (95.87 to 97.41) | (94.48 to 96.02) | (93.02 to 94.7) | (91.52 to 93.38) | (89.67 to 91.79) | (87.15 to 89.69) | (82.69 to 86.21) | (76.55 to 81.75) | (68.7 to 75.65) | (57.97 to 65.35) |

[^1]| Decile |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scenario HR=0.6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 26.84 | 19.74 | 17.52 | 15.87 | 14.57 | 13.43 | 12.48 | 11.18 | 9.32 | 6.2 |
|  | (26.71 to 26.96) | (19.64 to 19.86) | (17.41 to 17.65) | (15.76 to 16.02) | (14.45 to 14.73) | (13.3 to 13.61) | (12.32 to 12.69) | (10.99 to 11.44) | (9.07 to 9.63) | (5.85 to 6.59) |
|  | 19.25 | 14.17 | 12.54 | 11.31 | 10.32 | 9.45 | 8.65 | 7.62 | 6.18 | 3.96 |
| QALYs* | (18.09 to 20.12) | (13.38 to 14.77) | (11.84 to 13.07) | (10.68 to 11.8) | (9.74 to 10.77) | (8.91 to 9.87) | (8.14 to 9.05) | (7.13 to 8.01) | (5.73 to 6.57) | (3.6 to 4.32) |
| QALYs** | 19.18 | 14.09 | 12.46 | 11.23 | 10.24 | 9.36 | 8.56 | 7.52 | 6.08 | 3.83 |
|  | (18.08 to 20.01) | (13.36 to 14.69) | (11.81 to 12.99) | (10.65 to 11.71) | (9.7 to 10.67) | (8.86 to 9.77) | (8.08 to 8.97) | (7.06 to 7.91) | (5.66 to 6.45) | (3.51 to 4.18) |
| Total Cost (£) | 114,589 | 80,029 | 72,020 | 67,443 | 64,283 | 62,397 | 62,832 | 61,906 | 57,799 | 46,370 |
|  | ( 62,629 to 165,153) | ( 53,217 to 106,536) | $(52,323$ to 91,300$)$ | $(52,434$ to 82,527$)$ | $(52,406$ to 76,127$)$ | ( 53,341 to 71,876) | ( 55,638 to 70,110) | $(56,117$ to 67,617) | ( 52,769 to 63,033) | $(41,440$ to 51,583$)$ |
| CVD Specific Cost (£) | 69,971 | 50,656 | 46,581 | 44,404 | 42,872 | 42,103 | 42,833 | 42,623 | 40,383 | 33,199 |
|  | ( 26,732 to 111,558 ) | (28,272 to 72,342$)$ | ( 30,007 to 62,763) | ( 31,581 to 57,064 ) | $(32,790$ to 52,950$)$ | $(34,254$ to 50,298$)$ | ( 36,510 to 49,136) | ( 37,821 to 47,567) | (36,362 to 44,471) | $(29,645$ to 36,932$)$ |
| CHD Specific Cost (£) | 45,409 | 34,962 | 32,973 | 31,948 | 31,194 | 30,684 | 31,022 | 30,625 | 28,780 | 23,609 |
|  | (11,140 to 78,019) | (17,312 to 51,987) | $(19,872$ to 45,761$)$ | ( 21,773 to 41,976) | ( 23,113 to 39,221 ) | ( 24,409 to 37,185 ) | ( 25,896 to 36,120 ) | ( 26,717 to 34,582 ) | ( 25,670 to 31,945) | (21,053 to 26,297) |
| Discounted Life Years | 16.81 | 13.75 | 12.63 | 11.73 | 10.97 | 10.27 | 9.63 | 8.75 | 7.46 | 5.21 |
|  | (16.76 to 16.87) | (13.69 to 13.81) | (12.57 to 12.7) | (11.66 to 11.81) | (10.89 to 11.07) | (10.18 to 10.38) | (9.53 to 9.76) | (8.63 to 8.91) | (7.29 to 7.66) | (4.96 to 5.47) |
| Discounted QALYs* | 12.13 | 9.9 | 9.06 | 8.38 | 7.79 | 7.23 | 6.69 | 5.97 | 4.95 | 3.33 |
|  | (11.49 to 12.63) | (9.4 to 10.31) | (8.6 to 9.44) | (7.95 to 8.72) | (7.38 to 8.11) | (6.85 to 7.54) | (6.31 to 6.99) | (5.62 to 6.27) | (4.61 to 5.24) | (3.05 to 3.6) |
| Discounted QALYs** | 12.09 | 9.86 | 9.02 | 8.33 | 7.74 | 7.18 | 6.63 | 5.91 | 4.88 | 3.24 |
|  | (11.48 to 12.59) | (9.38 to 10.26) | (8.58 to 9.39) | (7.92 to 8.67) | (7.35 to 8.05) | (6.81 to 7.48) | (6.27 to 6.93) | (5.56 to 6.2) | (4.56 to 5.16) | (2.98 to 3.49) |
| Discounted Total Cost (£) | 61,233 | 50,089 | 47,430 | 46,087 | 45,193 | 44,876 | 45,984 | 46,289 | 44,565 | 37,944 |
|  | (32,738 to 88,921) | (33,569 to 66,414) | ( 34,955 to 59,854 ) | $(36,357$ to 55,823$)$ | $(37,422$ to 52,982) | ( 38,931 to 51,071 ) | $(41,303$ to 50,665) | (42,418 to 49,997) | ( 40,929 to 48,237) | ( 34,172 to 41,744) |
| Discounted CVD Cost (£) | 36,968 | 31,563 | 30,611 | 30,322 | 30,141 | 30,301 | 31,382 | 31,911 | 31,176 | 27,188 |
|  | (13,867 to 59,331) | $(17,844$ to 44,928$)$ | ( 20,147 to 40,772) | ( 22,069 to 38,417) | $(23,569$ to 36,749$)$ | $(25,165$ to 35,650$)$ | ( 27,283 to 35,469 ) | ( 28,661 to 35,135 ) | ( 28,361 to 34,031 ) | ( 24,466 to 29,914) |
| Discounted CHD Cost ( $£$ ) | 24,616 | 22,243 | 22,072 | 22,173 | 22,250 | 22,362 | 22,973 | 23,129 | 22,365 | 19,407 |
|  | (6,435 to 42,245) | (11,423 to 32,734) | $(13,810$ to 30,061$)$ | $(15,605$ to 28,608) | $(16,989$ to 27,496) | (18,271 to 26,630) | $(19,663$ to 26,264) | (20,522 to 25,716) | ( 20,170 to 24,561) | (17,431 to 21,396) |
| Time to first event (years) | 25.4 | 18.57 | 16.42 | 14.81 | 13.54 | 12.43 | 11.5 | 10.2 | 8.32 | 5.17 |
|  | (25.24 to 25.55) | (18.46 to 18.68) | (16.31 to 16.51) | (14.71 to 14.91) | (13.44 to 13.64) | (12.33 to 12.54) | (11.38 to 11.62) | (10.06 to 10.33) | (8.17 to 8.48) | (4.97 to 5.35) |
|  | 3.71 | 4.42 | 5.05 | 5.64 | 6.25 | 6.87 | 7.56 | 8.22 | 8.88 | 10.44 |
| MI as primary endpoint (\%) | (3.42 to 4.02) | (4.18 to 4.67) | (4.83 to 5.29 ) | (5.41 to 5.87) | (6.02 to 6.47) | (6.65 to 7.09) | (7.34 to 7.79) | (7.98 to 8.46) | (8.62 to 9.14) | (10.09 to 10.78) |
| Ischaemic stroke as primary endpoint | 3.42 | 3.56 | 3.82 | 4.06 | 4.36 | 4.78 | 5.48 | 6.33 | 7.12 | 7.59 |
| (\%) | (3.1 to 3.78 ) | (3.34 to 3.84) | (3.6 to 4.07) | (3.85 to 4.3) | (4.14 to 4.57) | (4.56 to 5) | (5.24 to 5.73) | (6.05 to 6.61) | (6.82 to 7.42) | (7.26 to 7.96) |
| Haemorragic stroke as primary | 0.69 | 0.7 | 0.74 | 0.77 | 0.79 | 0.82 | 0.87 | 0.88 | 0.83 | 0.61 |
| endpoint (\%) | (0.5 to 0.92) | (0.57 to 0.85 ) | (0.62 to 0.87) | (0.66 to 0.89) | (0.69 to 0.9) | (0.73 to 0.93) | (0.77 to 0.98) | (0.78 to 1) | (0.73 to 0.96) | (0.52 to 0.73) |
| CVD Mortality (\%) | 2.87 | 4.22 | 5.47 | 6.72 | 8.23 | 10.2 | 13.54 | 18.12 | 24.67 | 35.36 |
|  | (2.2 to 3.58 ) | (3.47 to 4.82) | (4.62 to 6.1) | (5.78 to 7.42) | (7.19 to 9.06) | (9.05 to 11.3) | (12.16 to 15.32) | (16.21 to 20.87) | (21.84 to 28.1) | (31.76 to 38.53) |
|  | 97.07 | 95.78 | 94.53 | 93.28 | 91.77 | 89.8 | 86.46 | 81.88 | 75.33 | 64.64 |
| Non-CVD Mortality (\%) | (96.36 to 97.73) | (95.18 to 96.53) | (93.9 to 95.38) | (92.58 to 94.22) | (90.94 to 92.81) | (88.7 to 90.95) | (84.68 to 87.84) | (79.13 to 83.79) | (71.9 to 78.16) | (61.47 to 68.23) |
| * 1 year decrement post event <br> ** constant decrement post event |  |  |  |  |  |  |  |  |  |  |





## Section 2: Results Based on Selected Clinical Profile

|  | Patient Profile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basecase | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 25.61 | 18.6 | 18.41 | 16.55 | 15.01 | 13.5 | 12.41 | 10.41 | 9.04 | 5.48 |
|  | (25.33 to 25.84) | (18.29 to 18.87) | (18.14 to 18.69) | (16.23 to 16.88) | (14.77 to 15.35) | (13.11 to 13.9) | (11.93 to 12.84) | (9.98 to 10.82) | (8.35 to 9.74) | (4.99 to 6.07) |
|  | 18.51 | 13.47 | 13.36 | 12.02 | 10.9 | 9.81 | 9.01 | 6.34 | 5.5 | 3.33 |
| QALYs* | (17.4 to 19.34) | (12.69 to 14.09) | (12.59 to 13.98) | (11.33 to 12.57) | (10.32 to 11.43) | (9.22 to 10.34) | (8.4 to 9.51) | (5.73 to 6.84) | (4.88 to 6.08) | (2.95 to 3.75) |
| QALYs** | 18.4 | 13.37 | 13.26 | 11.93 | 10.76 | 9.66 | 8.84 | 6.22 | 5.34 | 3.22 |
|  | (17.39 to 19.2) | (12.65 to 13.99) | (12.56 to 13.85) | (11.29 to 12.47) | (10.19 to 11.28) | (9.1 to 10.18) | (8.29 to 9.34) | (5.63 to 6.71) | (4.73 to 5.93) | (2.83 to 3.62 ) |
| Total Cost (f) | 97,039 | 82,964 | 81,898 | 56,502 | 49,665 | 44,497 | 63,359 | 50,352 | 68,067 | 42,529 |
|  | ( 49,388 to 143,478 ) | ( 60,489 to 106,300) | ( 58,414 to 106,229) | $(38,504$ to 74,266$)$ | ( 35,461 to 63,564 ) | $(33,681$ to 55,477$)$ | $(55,253$ to 72,133) | $(44,884$ to 56,263$)$ | ( 61,550 to 74,877) | $(37,990$ to 47,382) |
| CVD Specific Cost (£) | 58,657 | 51,727 | 52,296 | 36,941 | 33,987 | 30,821 | 48,232 | 35,462 | 51,822 | 30,566 |
|  | (19,082 to 96,458) | (32,888 to 71,095) | $(33,045$ to 72,395$)$ | $(21,875$ to 51,656$)$ | ( 22,071 to 45,875 ) | (21,659 to 40,068) | $(41,260$ to 55,659$)$ | ( 31,008 to 40,395) | $(46,701$ to 57,265$)$ | $(27,267$ to 33,973$)$ |
| CHD Specific Cost (£) | 35,950 | 34,931 | 36,125 | 24,542 | 27,987 | 25,520 | 34,655 | 26,699 | 37,519 | 24,279 |
|  | (4,550 to 65,628) | (19,966 to 50,241) | (20,724 to 52,053) | $(12,542$ to 36,201$)$ | $(18,501$ to 37,393$)$ | $(18,181$ to 32,893$)$ | ( 29,155 to 40,573) | ( 23,119 to 30,529) | $(33,671$ to 41,528) | ( 21,793 to 26,868) |
| Discounted Life Years | 16.27 | 13.06 | 12.93 | 11.98 | 11.16 | 10.23 | 9.59 | 8.23 | 7.26 | 4.64 |
|  | (16.14 to 16.38) | (12.89 to 13.22) | (12.77 to 13.1) | (11.78 to 12.19) | (11 to 11.36) | (9.97 to 10.49) | (9.27 to 9.87) | (7.93 to 8.51) | (6.78 to 7.75) | (4.27 to 5.07) |
| Discounted QALYs* | 11.82 | 9.49 | 9.42 | 8.73 | 8.12 | 7.45 | 6.97 | 5.02 | 4.42 | 2.83 |
|  | (11.21 to 12.31) | (8.98 to 9.91) | (8.94 to 9.83) | (8.27 to 9.1) | (7.72 to 8.49) | (7.04 to 7.82) | (6.54 to 7.33) | (4.57 to 5.39) | (3.96 to 4.86) | (2.53 to 3.15) |
| Discounted QALYs** | 11.77 | 9.43 | 9.36 | 8.67 | 8.03 | 7.36 | 6.86 | 4.94 | 4.31 | 2.74 |
|  | (11.19 to 12.25) | (8.96 to 9.84) | (8.9 to 9.75) | (8.24 to 9.05) | (7.64 to 8.4) | (6.96 to 7.72) | (6.45 to 7.21) | (4.5 to 5.31) | (3.85 to 4.75) | (2.43 to 3.06) |
| Discounted Total Cost ( $£$ ) | 51,587 | 52,614 | 51,998 | 36,514 | 33,301 | 30,690 | 46,305 | 37,856 | 52,947 | 35,084 |
|  | (25,308 to 76,991) | $(38,840$ to 66,986$)$ | (37,350 to 67,021) | $(25,099$ to 47,787$)$ | ( 24,026 to 42,212) | $(23,448$ to 37,856$)$ | ( 40,908 to 52,152) | ( 34,171 to 41,732) | $(48,530$ to 57,385$)$ | $(31,596$ to 38,769$)$ |
| Discounted CVD Cost (f) | 30,666 | 32,587 | 33,049 | 23,805 | 22,826 | 21,306 | 35,458 | 26,713 | 40,433 | 25,227 |
|  | (9,115 to 51,409) | (21,083 to 44,440) | (21,154 to 45,279) | ( 14,252 to 33,081 ) | $(14,984$ to 30,469$)$ | (15,246 to 27,335) | $(30,850$ to 40,399$)$ | ( 23,719 to 29,981) | (36,920 to 44,039) | $(22,734$ to 27,750$)$ |
| Discounted CHD Cost ( $£$ ) | 19,118 | 22,399 | 23,243 | 16,060 | 19,356 | 18,118 | 25,707 | 20,326 | 29,414 | 20,117 |
|  | (2,134 to 35,549) | (13,269 to 31,756) | $(13,848$ to 32,937$)$ | $(8,520$ to 23,477$)$ | $(13,131$ to 25,442$)$ | $(13,283$ to 22,916) | ( 22,029 to 29,616) | $(17,873$ to 22,917) | $(26,822$ to 32,126$)$ | $(18,226$ to 22,068) |
| Time to first event (years) | 23.4 | 16.82 | 16.31 | 14.72 | 13.24 | 11.81 | 10.65 | 9.12 | 7.31 | 4.13 |
|  | (22.98 to 23.79) | (16.4 to 17.24) | (15.89 to 16.72) | (14.25 to 15.21) | (12.84 to 13.6) | (11.26 to 12.34) | (10.07 to 11.19) | (8.65 to 9.61) | (6.55 to 8.11) | (3.62 to 4.65) |
| MI as primary endpoint (\%) <br> Ischaemic stroke as primary endpoint (\%) | 5.82 | 5.93 | 8.32 | 8.86 | 11.2 | 11.51 | 11.57 | 10.17 | 15 | 16.81 |
|  | (4.96 to 6.76) | (5.19 to 6.7) | (7.44 to 9.19) | (7.78 to 9.87) | (10.3 to 12.21) | (10.25 to 12.85) | (10.33 to 12.86) | (9.29 to 11.08) | (13.4 to 16.61) | (15.81 to 17.77) |
|  | 5.84 | 6.99 | 6.94 | 6.15 | 5.62 | 5.94 | 10.05 | 7.32 | 9.95 | 5.89 |
|  | (4.9 to 6.72) | (5.94 to 8.01) | (6.07 to 7.88) | (5.26 to 7.02) | (4.96 to 6.33) | (4.92 to 7.02) | (8.5 to 11.65) | (6.56 to 8.04) | (8.61 to 11.27) | (5.33 to 6.51) |
| Haemorragic stroke as primary endpoint (\%) | 0.64 | 0.66 | 0.71 | 0.74 | 0.78 | 0.76 | 0.84 | 0.83 | 0.73 | 0.53 |
|  | (0.42 to 0.99) | (0.49 to 0.89 ) | (0.56 to 0.89) | (0.61 to 0.9) | (0.65 to 0.91) | (0.65 to 0.89) | (0.7 to 0.99) | (0.68 to 0.98) | (0.59 to 0.91) | (0.41 to 0.67 ) |
| CVD Mortality (\%) | 4.51 | 6.82 | 9.64 | 13.33 | 15.84 | 18.52 | 22.08 | 32.49 | 35.15 | 47.28 |
|  | (3.21 to 6.05) | (5.25 to 8.71) | (8.01 to 11.18) | (11.34 to 15.28) | (13.78 to 17.34) | (16.22 to 20.65) | (19.08 to 25.21) | (29.49 to 35.87) | (30.94 to 40.6) | (44.52 to 50.44) |
|  | 95.44 | 93.18 | 90.36 | 86.67 | 84.16 | 81.48 | 77.92 | 67.51 | 64.85 | 52.72 |
| Non-CVD Mortality (\%) | (93.91 to 96.74) | (91.29 to 94.75) | (88.82 to 91.99) | (84.72 to 88.66) | (82.66 to 86.22) | (79.35 to 83.78) | (74.79 to 80.92) | (64.13 to 70.51) | (59.4 to 69.06) | (49.56 to 55.48) |
| * 1 year decrement post event <br> ** constant decrement post event |  |  |  |  |  |  |  |  |  |  |


|  | Patient Profile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scenario HR=0.9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 25.62 | 18.63 | 18.46 | 16.63 | 15.12 | 13.62 | 12.55 | 10.61 | 9.22 | 5.64 |
|  | (25.36 to 25.83) | (18.34 to 18.89) | (18.2 to 18.72) | (16.33 to 16.94) | (14.88 to 15.43) | (13.24 to 14) | (12.1 to 12.96) | (10.2 to 11.01) | (8.55 to 9.91) | (5.14 to 6.22) |
|  | 18.52 | 13.49 | 13.4 | 12.08 | 10.98 | 9.89 | 9.11 | 6.46 | 5.61 | 3.43 |
| QALYs* | (17.41 to 19.34) | (12.71 to 14.11) | (12.63 to 14.02) | (11.39 to 12.63) | (10.39 to 11.51) | (9.32 to 10.42) | (8.5 to 9.61) | (5.86 to 6.96) | (5 to 6.2) | (3.04 to 3.85) |
| QALYs** | 18.42 | 13.4 | 13.3 | 12 | 10.84 | 9.76 | 8.95 | 6.35 | 5.46 | 3.32 |
|  | (17.41 to 19.21) | (12.66 to 14.02) | (12.6 to 13.9) | (11.36 to 12.54) | (10.28 to 11.36) | (9.2 to 10.28) | (8.4 to 9.44) | (5.76 to 6.84) | (4.86 to 6.06) | (2.93 to 3.73) |
| Total Cost (£) | 96,485 | 82,651 | 81,602 | 56,373 | 49,603 | 44,507 | 63,671 | 51,081 | 69,059 | 43,211 |
|  | (48,868 to 142,792) | (60,084 to 105,889) | ( 58,059 to 105,970) | ( 38,270 to 74,247) | $(35,239$ to 63,636$)$ | ( 33,514 to 55,525 ) | (55,554 to 72,503) | $(45,539$ to 56,973$)$ | ( 62,597 to 75,932) | ( 38,644 to 47,975) |
| CVD Specific Cost ( $£$ ) | 58,183 | 51,424 | 51,983 | 36,747 | 33,841 | 30,728 | 48,389 | 35,881 | 52,485 | 30,953 |
|  | $(18,584$ to 96,005$)$ | (32,565 to 70,764) | $(32,673$ to 72,094$)$ | ( 21,576 to 51,557) | ( 21,836 to 45,815 ) | ( 21,468 to 40,049) | $(41,342$ to 55,926$)$ | (31,279 to 40,876) | $(47,383$ to 57,956$)$ | ( 27,600 to 34,392 ) |
| CHD Specific Cost (£) | 35,591 | 34,700 | 35,867 | 24,355 | 27,856 | 25,433 | 34,736 | 26,985 | 37,957 | 24,549 |
|  | (4,179 to 65,238) | (19,717 to 49,980) | (20,411 to 51,780) | $(12,238$ to 36,056$)$ | (18,299 to 37,339) | $(18,015$ to 32,911$)$ | (29,139 to 40,717) | (23,325 to 30,912) | ( 34,083 to 42,009) | (21,993 to 27,129) |
| Discounted Life Years | 16.28 | 13.08 | 12.97 | 12.04 | 11.23 | 10.31 | 9.68 | 8.37 | 7.39 | 4.77 |
|  | (16.16 to 16.38) | (12.92 to 13.23) | (12.81 to 13.13) | (11.85 to 12.23) | (11.07 to 11.42) | (10.06 to 10.56) | (9.38 to 9.94) | (8.09 to 8.64) | (6.92 to 7.87) | (4.39 to 5.2) |
| Discounted QALYs* | 11.83 | 9.5 | 9.45 | 8.77 | 8.17 | 7.51 | 7.04 | 5.11 | 4.51 | 2.9 |
|  | (11.21 to 12.32) | (9 to 9.92) | (8.96 to 9.85) | (8.31 to 9.15) | (7.77 to 8.54) | (7.11 to 7.87) | (6.62 to 7.4) | (4.65 to 5.48) | (4.05 to 4.94) | (2.6 to 3.23) |
| Discounted QALYs** | 11.78 | 9.45 | 9.39 | 8.72 | 8.09 | 7.42 | 6.94 | 5.03 | 4.4 | 2.82 |
|  | (11.2 to 12.26) | (8.98 to 9.86) | (8.93 to 9.79) | (8.29 to 9.1) | (7.7 to 8.45) | (7.03 to 7.79) | (6.53 to 7.28) | (4.59 to 5.4) | (3.94 to 4.84) | (2.51 to 3.15) |
| Discounted Total Cost ( $£$ ) | 51,342 | 52,441 | 51,836 | 36,425 | 33,239 | 30,666 | 46,467 | 38,295 | 53,587 | 35,583 |
|  | (25,061 to 76,713) | $(38,615$ to 66,779$)$ | $(37,149$ to 66,887$)$ | ( 24,925 to 47,761) | ( 23,924 to 42,230) | $(23,325$ to 37,832) | (40,985 to 52,319) | $(34,568$ to 42,160) | (49,192 to 58,106) | ( 32,027 to 39,279 ) |
| Discounted CVD Cost ( $£$ ) | 30,444 | 32,412 | 32,867 | 23,674 | 22,713 | 21,220 | 35,525 | 26,953 | 40,851 | 25,499 |
|  | (8,896 to 51,182) | ( 20,889 to 44,247 ) | (20,914 to 45,124) | ( 14,084 to 33,008 ) | $(14,813$ to 30,411$)$ | $(15,099$ to 27,307$)$ | $(30,895$ to 40,460$)$ | $(23,866$ to 30,246$)$ | ( 37,331 to 44,467) | ( 22,984 to 28,085 ) |
| Discounted CHD Cost ( $£$ ) | 18,946 | 22,264 | 23,092 | 15,936 | 19,258 | 18,044 | 25,735 | 20,492 | 29,689 | 20,306 |
|  | (1,943 to 35,380) | (13,129 to 31,612) | (13,665 to 32,810) | (8,324 to 23,396) | ( 12,998 to 25,375 ) | $(13,162$ to 22,903) | (21,999 to 29,689) | (17,981 to 23,127) | $(27,075$ to 32,416$)$ | (18,406 to 22,293) |
| Time to first event (years) | 23.6 | 17.01 | 16.54 | 14.96 | 13.49 | 12.07 | 10.93 | 9.43 | 7.62 | 4.37 |
|  | (23.22 to 23.96) | (16.61 to 17.4) | (16.14 to 16.93) | (14.51 to 15.42) | (13.11 to 13.84) | (11.54 to 12.58) | (10.37 to 11.45) | (8.96 to 9.9) | (6.87 to 8.41) | (3.84 to 4.91) |
| MI as primary endpoint (\%) <br> Ischaemic stroke as primary endpoint (\%) | 5.28 | 5.39 | 7.58 | 8.08 | 10.25 | 10.55 | 10.65 | 9.41 | 13.98 | 15.85 |
|  | (4.49 to 6.13) | (4.71 to 6.1) | (6.77 to 8.39) | (7.09 to 9.02) | (9.41 to 11.19) | (9.38 to 11.81) | (9.48 to 11.86) | (8.58 to 10.28) | (12.43 to 15.54) | (14.88 to 16.79) |
|  | 5.3 | 6.36 | 6.33 | 5.62 | 5.15 | 5.46 | 9.28 | 6.8 | 9.33 | 5.61 |
|  | (4.45 to 6.11) | (5.4 to 7.3) | (5.53 to 7.2) | (4.8 to 6.43) | (4.53 to 5.82) | (4.51 to 6.48) | (7.82 to 10.79) | (6.08 to 7.5) | (8.04 to 10.61) | (5.05 to 6.22) |
| Haemorragic stroke as primary endpoint (\%) | 0.65 | 0.67 | 0.72 | 0.76 | 0.79 | 0.78 | 0.86 | 0.86 | 0.77 | 0.56 |
|  | (0.42 to 0.99) | (0.49 to 0.9 ) | (0.57 to 0.9) | (0.62 to 0.91) | (0.67 to 0.93) | (0.66 to 0.91) | (0.72 to 1.01) | (0.71 to 1.01) | (0.61 to 0.94) | (0.43 to 0.71) |
| CVD Mortality (\%) | 4.12 | 6.23 | 8.83 | 12.23 | 14.56 | 17.07 | 20.45 | 30.29 | 33.07 | 45.15 |
|  | (2.92 to 5.52) | (4.78 to 7.98) | (7.32 to 10.25) | (10.38 to 14.04) | (12.65 to 15.96) | (14.92 to 19.08) | (17.65 to 23.42) | (27.41 to 33.48) | (28.99 to 38.32) | (42.44 to 48.26) |
| Non-CVD Mortality (\%) | 95.83 | 93.77 | 91.17 | 87.77 | 85.44 | 82.93 | 79.55 | 69.71 | 66.93 | 54.85 |
|  | (94.44 to 97.02) | (92.02 to 95.21) | (89.75 to 92.67) | (85.96 to 89.62) | (84.04 to 87.35) | (80.92 to 85.08) | (76.58 to 82.35) | (66.52 to 72.59) | (61.68 to 71.01) | (51.74 to 57.56) |
| * 1 year decrement post event <br> ** constant decrement post event |  |  |  |  |  |  |  |  |  |  |


|  | Patient Profile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scenario HR=0.8 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 25.63 | 18.66 | 18.51 | 16.72 | 15.22 | 13.74 | 12.7 | 10.83 | 9.43 | 5.81 |
|  | (25.38 to 25.82) | (18.39 to 18.91) | (18.26 to 18.76) | (16.43 to 17.01) | (15 to 15.51) | (13.38 to 14.1) | (12.27 to 13.08) | (10.43 to 11.21) | (8.76 to 10.1) | (5.3 to 6.4) |
| QALYs* | 18.52(17.42 to 19.33) | 13.51 | 13.44 | 12.14 | 11.06 | 9.98 | 9.21 | 6.6 | 5.74 | 3.54 |
|  |  | (12.74 to 14.14) | (12.67 to 14.05) | (11.45 to 12.69) | (10.46 to 11.58) | (9.41 to 10.5) | (8.63 to 9.71) | (5.99 to 7.1) | (5.12 to 6.33) | (3.14 to 3.96) |
| QALYs** | 18.44(17.41 to 19.23) | 13.43 | 13.35(12.64 to 13.94) | 12.07(11.43 to 12.61 ) | 10.93 | 9.86 | 9.07 | 6.5 | 5.6 | 3.44 |
|  |  | (12.69 to 14.05) |  |  | (10.38 to 11.45) | (9.3 to 10.37) | (8.51 to 9.55) | (5.9 to 6.99) | (4.99 to 6.18) | (3.04 to 3.86) |
| Total Cost (£) | 95,922 | 82,332 | $\begin{array}{r} 81,298 \\ (57,695 \text { to } 105,704) \end{array}$ | $\begin{array}{r} 56,240 \\ (38,071 \text { to } 74,228) \end{array}$ | 49,540 | 44,520 | 63,999 | 51,861 | 70,142 | 44,009 |
|  | (48,341 to 142,167) | $(59,672$ to 105,476) |  |  | (35,031 to 63,711) | (33,403 to 55,609) | ( 55,728 to 72,915) | $(46,260$ to 57,771) | ( 63,621 to 77,035 ) | ( 39,340 to 48,836) |
| CVD Specific Cost (f) | 57,701 | 51,115 | 51,662 | 36,547 | $\begin{array}{r} 33,691 \\ (21,594 \text { to } 45,727) \end{array}$ | 30,633 | 48,555 | 36,330 | 53,210 | 31,410 |
|  | (18,079 to 95,545) | $(32,236$ to 70,426$)$ | $(32,253$ to 71,783)35,603 | $(21,280$ to 51,443$)$24,163 |  | ( 21,271 to 40,110) | $(41,424$ to 56,149$)$ | ( 31,632 to 41,362) | $(48,062$ to 58,630) | $(28,020$ to 34,900) |
|  | 35,228 | 34,465 |  |  | 27,720 | $\begin{array}{r} 25,343 \\ (17,843 \text { to } 32,903) \end{array}$ | $\begin{array}{r} 34,822 \\ (29,179 \text { to } 40,814) \end{array}$ | $\begin{array}{r} 27,292 \\ (23,487 \text { to } 31,333) \end{array}$ | $\begin{array}{r} 38,435 \\ (34,513 \text { to } 42,530) \end{array}$ | 24,869$(22,288$ to 27,583$)$ |
| CHD Specific Cost (f) | $(3,802$ to 64,885$)$ | (19,463 to 49,734) | (20,091 to 51,513) | (11,976 to 35,919) | (18,092 to 37,274 ) |  |  |  |  |  |
| Discounted Life Years | 16.29 | 13.1 | 13 | 12.1 |  | $\begin{array}{r} 10.4 \\ \text { (10.15 to } 10.63 \text { ) } \end{array}$ | $\begin{array}{r} 9.78 \\ (9.5 \text { to } 10.03) \end{array}$ | $8.52$ | 7.53 | 4.91 |
|  | (16.18 to 16.39) | (12.95 to 13.25) | (12.86 to 13.15) | (11.92 to 12.28) | (11.15 to 11.48) |  |  | (8.24 to 8.78) | (7.06 to 8) | (4.52 to 5.34) |
|  | 11.84 | 9.52 | 9.47 | 8.81 | 8.23 | $7.57$ | $7.11$ | 5.2 | 4.59 | 2.99 |
| Discounted QALYs* | (11.22 to 12.33) | (9.02 to 9.94) | (8.99 to 9.88) | (8.36 to 9.19) | (7.82 to 8.59) | (7.17 to 7.93) | (6.7 to 7.47) | (4.74 to 5.58) | (4.13 to 5.03) | (2.68 to 3.32) |
| Discounted QALYs** |  | 9.47 | 9.42 | 8.77 | 8.15 | 7.49 | 7.02 | 5.13 | 4.5 | 2.92 |
|  | (11.2 to 12.27) | (9 to 9.88) | (8.96 to 9.82) | (8.34 to 9.14) | (7.76 to 8.51) | (7.09 to 7.86) | (6.61 to 7.36) | (4.68 to 5.51) | (4.04 to 4.93) | (2.6 to 3.24) |
| Discounted Total Cost (£) | $\begin{array}{r} 51,093 \\ (24,811 \text { to } 76,431) \end{array}$ | 52,265 | 51,670 | 36,333 | $\begin{array}{r} 33,176 \\ (23,824 \text { to } 42,248) \end{array}$ | $\begin{array}{r} 30,642 \\ (23,215 \text { to } 37,869) \end{array}$ | $\begin{array}{r} 46,635 \\ (41,131 \text { to } 52,533) \end{array}$ | 38,761$(35,000$ to 42,676$)$ | $\begin{array}{r} 54,278 \\ (49,862 \text { to } 58,878) \end{array}$ | $\begin{array}{r} 36,156 \\ (32,540 \text { to } 39,848) \end{array}$ |
|  |  | $(38,386$ to 66,568$)$ | (36,942 to 66,748) | ( 24,782 to 47,735) |  |  |  |  |  |  |
| Discounted CVD Cost ( $£$ ) | $\begin{array}{r} 30,219 \\ (8,678 \text { to } 50,952) \end{array}$ | 32,234 | 32,682$(20,669$ to 44,986$)$ | 23,540 | 22,597 | 21,131 | 35,595 | 27,208 | 41,304 | 25,815 |
|  |  | ( 20,692 to 44,050) |  | (13,891 to 32,934$)$ | $(14,643$ to 30,311$)$ | ( 14,947 to 27,279) | ( 30,935 to 40,625) | ( 24,014 to 30,581 ) | ( 37,805 to 44,953) | ( 23,300 to 28,466 ) |
| Discounted CHD Cost (f) | $\begin{array}{r} 18,771 \\ (1,749 \text { to } 35,209) \end{array}$ | 22,128 | $\begin{array}{r} 22,937 \\ (13,475 \text { to } 32,678) \end{array}$ | $\begin{array}{r} 15,810 \\ \text { (8,126 to } 23,289 \text { ) } \end{array}$ | $\begin{array}{r} 19,158 \\ (12,862 \text { to } 25,292) \end{array}$ | $\begin{array}{r} 17,967 \\ (13,037 \text { to } 22,902) \end{array}$ | $\begin{array}{r} 25,765 \\ (21,967 \text { to } 29,778) \end{array}$ | 20,667 | 29,987$(27,342$ to 32,777$)$ | $\begin{array}{r} 20,528 \\ (18,602 \text { to } 22,585) \end{array}$ |
|  |  | (12,987 to 31,465) |  |  |  |  |  | (18,126 to 23,356) |  |  |
| Time to first event (years) | $\begin{array}{r} 23.81 \\ (23.46 \text { to } 24.15) \end{array}$ | 17.2 | $\begin{array}{r} 16.77 \\ \text { (16.4 to } 17.14 \text { ) } \end{array}$ | $\begin{array}{r} 15.21 \\ (14.79 \text { to } 15.64) \end{array}$ | $\begin{array}{r} 13.75 \\ (13.39 \text { to } 14.08) \end{array}$ | $\begin{array}{r} 12.33 \\ (11.83 \text { to } 12.81) \end{array}$ | $\begin{array}{r} 11.22 \\ (10.68 \text { to } 11.71) \end{array}$ | $\begin{array}{r} 9.75 \\ (9.29 \text { to } 10.2 \text { ) } \end{array}$ | $\begin{array}{r} 7.95 \\ (7.21 \text { to } 8.73) \end{array}$ | $\begin{array}{r} 4.64 \\ (4.09 \text { to } 5.19) \end{array}$ |
|  |  | (16.83 to 17.56) |  |  |  |  |  |  |  |  |
|  | 4.73 | 4.84 | 6.82 | 7.29 | 9.26 | 9.56 | 9.68 | 8.61 | 12.88 | 14.8 |
| MI as primary endpoint (\%) <br> Ischaemic stroke as primary endpoint <br> (\%) | (4.02 to 5.5) | (4.22 to 5.48) | (6.08 to 7.55) | (6.38 to 8.15) | (8.49 to 10.14) | (8.48 to 10.72) | (8.6 to 10.81) | (7.83 to 9.42) | (11.41 to 14.38) | (13.86 to 15.71) |
|  | $\begin{array}{r} 4.75 \\ (3.98 \text { to } 5.48) \end{array}$ | $\begin{array}{r} 5.71 \\ (4.84 \text { to } 6.58) \end{array}$ | $\begin{array}{r} 5.71 \\ (4.97 \text { to } 6.51) \end{array}$ | $\begin{array}{r} 5.08 \\ (4.33 \text { to } 5.82) \end{array}$ | $\begin{array}{r} 4.67 \\ (4.1 \text { to } 5.28) \end{array}$ | $\begin{array}{r} 4.96 \\ \text { (4.08 to } 5.9 \text { ) } \end{array}$ | $\begin{array}{r} 8.47 \\ (7.11 \text { to } 9.88) \end{array}$ | $\begin{array}{r} 6.25 \\ \text { (5.57 to 6.91) } \end{array}$ | $\begin{array}{r} 8.66 \\ (7.43 \text { to } 9.88) \end{array}$ | $\begin{array}{r} 5.3 \\ (4.75 \text { to } 5.89) \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| Haemorragic stroke as primary endpoint (\%) | $\begin{array}{r} 0.66 \\ (0.43 \text { to } 1) \end{array}$ | 0.67(0.5 to 0.91 ) | $\begin{array}{r} 0.73 \\ (0.58 \text { to } 0.92) \end{array}$ | $\begin{array}{r} 0.77 \\ (0.63 \text { to } 0.93) \end{array}$ | $\begin{array}{r} 0.81 \\ (0.68 \text { to } 0.95) \end{array}$ | $\begin{array}{r} 0.8 \\ (0.67 \text { to } 0.93) \end{array}$ | $\begin{array}{r} 0.88 \\ (0.74 \text { to } 1.04) \end{array}$ | $\begin{array}{r} 0.89 \\ (0.73 \text { to } 1.04) \end{array}$ | $\begin{array}{r} 0.8 \\ \text { ( } 0.65 \text { to } 0.98 \text { ) } \end{array}$ | $\begin{array}{r} 0.59 \\ (0.46 \text { to } 0.76) \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| CVD Mortality (\%) | $\begin{array}{r} 3.72 \\ (2.64 \text { to } 5) \end{array}$ | (4.32 to 7.62 ) | $\begin{array}{r} 7.99 \\ (6.62 \text { to } 9.28) \end{array}$ | $\begin{array}{r} 11.08 \\ (9.38 \text { to } 12.76 \text { ) } \end{array}$ | $\begin{array}{r} 13.22 \\ (11.47 \text { to } 14.52) \end{array}$ | $\begin{array}{r} 15.55 \\ (13.56 \text { to } 17.42) \end{array}$ | 18.73(16.11 to 21.53) | (25.17 to $\begin{array}{r}27.91 \\ \text { 30.89 }\end{array}$ | 30.78(26.85 to 35.85) | $\begin{array}{r} 42.71 \\ (40.02 \text { to } 45.7) \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
|  | 96.23 | 94.37 | 92.01 | 88.92 | 86.78 | 84.45 | 81.27 | 72.09 | 69.22 | 57.29 |
| Non-CVD Mortality (\%) | (94.96 to 97.31) | (92.78 to 95.68) | (90.72 to 93.38) | (87.24 to 90.62) | (85.48 to 88.53) | (82.58 to 86.44) | (78.47 to 83.89) | (69.11 to 74.83) | (64.15 to 73.15) | (54.3 to 59.98) |
| * 1 year decrement post event |  |  |  |  |  |  |  |  |  |  |
| ** constant decrement post event |  |  |  |  |  |  |  |  |  |  |


|  | Patient Profile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scenario HR=0.7 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 25.63 | 18.69 | 18.56 | 16.81 | 15.33 | 13.87 | 12.85 | 11.06 | 9.64 | 6.02 |
|  | (25.41 to 25.81) | (18.43 to 18.92) | (18.33 to 18.79) | (16.54 to 17.08) | (15.12 to 15.6) | (13.52 to 14.21) | (12.45 to 13.2) | (10.67 to 11.43) | (8.98 to 10.3) | (5.5 to 6.6) |
|  | 18.53 | 13.53 | 13.47 | 12.21 | 11.14 | 10.07 | 9.33 | 6.74 | 5.87 | 3.66 |
| Qalys* | (17.44 to 19.34) | (12.76 to 14.16) | (12.72 to 14.08) | (11.52 to 12.75) | (10.54 to 11.65) | (9.51 to 10.59) | (8.75 to 9.82) | (6.13 to 7.25 ) | (5.24 to 6.46) | (3.25 to 4.1) |
| QALYs** | 18.45 | 13.46 | 13.4 | 12.14 | 11.03 | 9.97 | 9.2 | 6.65 | 5.75 | 3.57 |
|  | (17.43 to 19.25) | (12.73 to 14.08) | (12.67 to 13.98) | (11.51 to 12.68) | (10.46 to 11.53) | (9.41 to 10.48) | (8.65 to 9.67) | (6.04 to 7.15) | (5.13 to 6.34) | (3.16 to 4) |
| Total Cost (£) | 95,350 | 82,007 | 80,986 | 56,104 | 49,475 | 44,535 | 64,344 | 52,696 | 71,327 | 44,946 |
|  | ( 47,753 to 141,540 ) | ( 59,251 to 105,219) | $(57,322$ to 105,431) | ( 37,866 to 74,146) | $(34,845$ to 63,790$)$ | (33,299 to 55,682) | ( 55,974 to 73,352) | $(47,028$ to 58,676) | ( 64,740 to 78,249) | ( 40,207 to 49,952) |
| CVD Specific Cost ( $£$ ) | 57,213 | 50,800 | 51,332 | 36,342 | 33,537 | 30,536 | 48,729 | 36,811 | 54,003 | 31,952 |
|  | $(17,566$ to 95,080$)$ | (31,902 to 70,084) | (31,868 to 71,465) | ( 20,964 to 51,283$)$ | $(21,345$ to 45,638$)$ | ( 21,068 to 40,167) | $(41,505$ to 56,357$)$ | $(32,008$ to 41,968) | $(48,813$ to 59,461$)$ | $(28,526$ to 35,655$)$ |
| CHD Specific Cost (£) | 34,859 | 34,225 | 35,332 | 23,966 | 27,581 | 25,251 | 34,912 | 27,620 | 38,960 | 25,250 |
|  | (3,421 to 64,528) | $(19,204$ to 49,464) | (19,764 to 51,271) | $(11,740$ to 35,774$)$ | $(17,879$ to 37,170$)$ | ( 17,666 to 32,894 ) | ( 29,141 to 41,051) | (23,666 to 31,793) | ( 34,957 to 43,106) | (22,617 to 28,090) |
| Discounted Life Years | 16.3 | 13.12 | 13.04 | 12.16 | 11.37 | 10.48 | 9.88 | 8.68 | 7.69 | 5.07 |
|  | (16.2 to 16.39) | (12.98 to 13.26) | (12.9 to 13.18) | (11.99 to 12.33) | (11.24 to 11.54) | (10.24 to 10.7) | (9.62 to 10.12) | (8.42 to 8.93) | (7.23 to 8.15) | (4.67 to 5.49) |
| Discounted QALYs* | 11.85 | 9.54 | 9.5 | 8.86 | 8.28 | 7.63 | 7.19 | 5.3 | 4.69 | 3.09 |
|  | (11.23 to 12.33) | (9.04 to 9.96) | (9.01 to 9.9) | (8.4 to 9.24) | (7.87 to 8.64) | (7.23 to 7.99) | (6.78 to 7.54) | (4.84 to 5.68) | (4.22 to 5.12) | (2.77 to 3.42) |
| Discounted QALYs** | 11.81 | 9.49 | 9.45 | 8.82 | 8.21 | 7.56 | 7.1 | 5.23 | 4.6 | 3.02 |
|  | (11.22 to 12.28) | (9.01 to 9.9) | (8.99 to 9.85) | (8.38 to 9.19) | (7.82 to 8.56) | (7.16 to 7.93) | (6.71 to 7.45) | (4.78 to 5.61) | (4.15 to 5.03) | (2.7 to 3.35 ) |
| Discounted Total Cost (£) | 50,840 | 52,086 | 51,500 | 36,238 | 33,111 | 30,618 | 46,812 | 39,257 | 55,027 | 36,818 |
|  | (24,558 to 76,145) | (38,153 to 66,352) | $(36,731$ to 66,607$)$ | ( 24,636 to 47,649) | ( 23,721 to 42,241) | (23,119 to 37,930) | $(41,313$ to 52,758$)$ | ( 35,408 to 43,235) | ( 50,596 to 59,614) | (33,232 to 40,644) |
| Discounted CVD Cost (£) | 29,992 | 32,052 | 32,492 | 23,402 | 22,477 | 21,039 | 35,668 | 27,479 | 41,796 | 26,185 |
|  | (8,449 to 50,718) | ( 20,491 to 43,850 ) | (20,439 to 44,823) | $(13,723$ to 32,860$)$ | $(14,472$ to 30,209$)$ | $(14,790$ to 27,285$)$ | $(30,916$ to 40,786) | (24,203 to 30,925) | $(38,337$ to 45,452) | $(23,622$ to 28,883$)$ |
|  | 18,595 | 21,989 | 22,780 | 15,680 | 19,056 | 17,888 | 25,797 | 20,854 | 30,311 | 20,787 |
| Discounted CHD Cost ( $£$ ) | $(1,554$ to 35,036$)$ | (12,843 to 31,315) | $(13,281$ to 32,542$)$ | (7,972 to 23,191) | $(12,721$ to 25,204$)$ | ( 12,907 to 22,891) | ( 21,936 to 29,888) | $(18,233$ to 23,604) | $(27,637$ to 33,127$)$ | ( 18,831 to 22,867) |
| Time to first event (years) | 24.02 | 17.39 | 17.01 | 15.46 | 14.01 | 12.61 | 11.52 | 10.08 | 8.31 | 4.94 |
|  | (23.7 to 24.33) | (17.04 to 17.73) | (16.66 to 17.36) | (15.07 to 15.86) | (13.68 to 14.32) | (12.12 to 13.06) | (11.02 to 11.98) | (9.64 to 10.52) | (7.57 to 9.07) | (4.37 to 5.5) |
|  | 4.17 | 4.27 | 6.04 | 6.47 | 8.24 | 8.52 | 8.67 | 7.75 | 11.7 | 13.64 |
| MI as primary endpoint (\%) | (3.54 to 4.85) | (3.72 to 4.85) | (5.38 to 6.7) | (5.65 to 7.25) | (7.54 to 9.03) | (7.54 to 9.58) | (7.68 to 9.7) | (7.03 to 8.51) | (10.29 to 13.11) | (12.74 to 14.52) |
| Ischaemic stroke as primary endpoint | 4.2 | 5.05 | 5.07 | 4.52 | 4.16 | 4.44 | 7.61 | 5.66 | 7.92 | 4.94 |
| (\%) | (3.51 to 4.85) | (4.28 to 5.83) | (4.41 to 5.78) | (3.84 to 5.19) | (3.65 to 4.72) | (3.64 to 5.29) | (6.37 to 8.91) | (5.03 to 6.28) | (6.76 to 9.06) | (4.42 to 5.51) |
| Haemorragic stroke as primary | 0.66 | 0.68 | 0.74 | 0.78 | 0.82 | 0.81 | 0.91 | 0.92 | 0.84 | 0.63 |
| endpoint (\%) | (0.43 to 1.01) | (0.5 to 0.92) | (0.59 to 0.93) | (0.64 to 0.94) | (0.69 to 0.97) | (0.69 to 0.95) | (0.76 to 1.07) | (0.76 to 1.08) | (0.68 to 1.02) | (0.5 to 0.81) |
| CVD Mortality (\%) | 3.32 | 5.02 | 7.12 | 9.89 | 11.83 | 13.95 | 16.9 | 25.35 | 28.25 | 39.91 |
|  | (2.34 to 4.48) | (3.84 to 6.44) | (5.89 to 8.29) | (8.36 to 11.42) | (10.24 to 13.01) | (12.14 to 15.67) | (14.47 to 19.44) | (22.76 to 28.09) | (24.52 to 33.12) | (37.3 to 42.76) |
|  | 96.64 | 94.98 | 92.88 | 90.11 | 88.17 | 86.05 | 83.1 | 74.65 | 71.75 | 60.09 |
| Non-CVD Mortality (\%) | (95.47 to 97.61) | (93.56 to 96.16) | (91.71 to 94.11) | (88.58 to 91.64) | (86.99 to 89.76) | (84.33 to 87.86) | (80.56 to 85.53) | (71.91 to 77.24) | (66.88 to 75.48) | (57.24 to 62.7) |
| * 1 year decrement post event <br> ** constant decrement post event |  |  |  |  |  |  |  |  |  |  |


|  | Patient Profile |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scenario HR=0.6 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Life years | 25.64 | 18.72 | 18.61 | 16.9 | 15.44 | 14 | 13.01 | 11.3 | 9.88 | 6.25 |
|  | (25.43 to 25.81) | (18.48 to 18.93) | (18.39 to 18.83) | (16.65 to 17.16) | (15.25 to 15.69) | (13.66 to 14.32) | (12.64 to 13.34) | (10.94 to 11.65) | (9.24 to 10.54) | (5.72 to 6.83) |
|  | 18.53 | 13.56 | 13.51 | 12.28 | 11.22 | 10.17 | 9.44 | 6.89 | 6.01 | 3.8 |
| Qalys* | (17.46 to 19.35) | (12.78 to 14.18) | (12.76 to 14.12) | (11.59 to 12.83) | (10.63 to 11.73) | (9.6 to 10.68) | (8.87 to 9.93) | (6.27 to 7.39) | (5.39 to 6.6) | (3.39 to 4.24) |
| QALYs** | 18.47 | 13.49 | 13.44 | 12.22 | 11.12 | 10.07 | 9.33 | 6.8 | 5.9 | 3.72 |
|  | (17.44 to 19.27) | (12.76 to 14.11) | (12.72 to 14.03) | (11.58 to 12.76) | (10.55 to 11.62) | (9.52 to 10.58) | (8.79 to 9.8) | (6.19 to 7.31) | (5.28 to 6.49) | (3.31 to 4.16) |
| Total Cost (£) | 94,770 | 81,676 | 80,665 | 55,964 | 49,409 | 44,552 | 64,708 | 53,591 | 72,628 | 46,051 |
|  | ( 47,219 to 140,903 ) | ( 58,823 to 104,885) | ( 56,938 to 105,151) | ( 37,658 to 73,948) | ( 34,656 to 63,823) | ( 33,195 to 55,889) | ( 56,217 to 73,723) | (47,784 to 59,809) | ( 65,926 to 79,557) | ( 41,137 to 51,152) |
| CVD Specific Cost ( $£$ ) | 56,717 | 50,479 | 50,994 | 36,131 | 33,378 | 30,436 | 48,913 | 37,327 | 54,873 | 32,597 |
|  | (17,046 to 94,607) | (31,563 to 69,733) | ( 31,442 to 71,139 ) | ( 20,675 to 51,117) | ( 21,088 to 45,544 ) | ( 20,859 to 40,115) | $(41,574$ to 56,703$)$ | $(32,307$ to 42,633) | (49,624 to 60,397) | $(29,054$ to 36,334$)$ |
| CHD Specific Cost (£) | 34,485 | 33,981 | 35,054 | 23,763 | 27,437 | 25,156 | 35,007 | 27,972 | 39,535 | 25,705 |
|  | $(3,034$ to 64,166$)$ | (18,939 to 49,234) | (19,429 to 50,946) | ( 11,499 to 35,597) | ( 17,659 to 37,111) | $(17,483$ to 32,847$)$ | $(29,125$ to 41,280) | $(23,854$ to 32,253$)$ | ( 35,430 to 43,770) | ( 23,009 to 28,568) |
| Discounted Life Years | 16.31 | 13.15 | 13.07 | 12.22 | 11.45 | 10.57 | 9.99 | 8.84 | 7.85 | 5.24 |
|  | (16.22 to 16.4) | (13.01 to 13.28) | (12.94 to 13.21) | (12.06 to 12.38) | (11.32 to 11.6) | (10.34 to 10.78) | (9.74 to 10.21) | (8.6 to 9.08) | (7.4 to 8.3) | (4.84 to 5.66) |
| Discounted QALYs* | 11.85 | 9.55 | 9.53 | 8.9 | 8.34 | 7.69 | 7.26 | 5.4 | 4.79 | 3.19 |
|  | (11.24 to 12.34) | (9.06 to 9.97) | (9.03 to 9.93) | (8.45 to 9.28) | (7.92 to 8.69) | (7.3 to 8.05) | (6.86 to 7.61) | (4.94 to 5.78) | (4.32 to 5.22) | (2.87 to 3.53) |
| Discounted QALYs** | 11.82 | 9.52 | 9.49 | 8.87 | 8.28 | 7.63 | 7.19 | 5.34 | 4.71 | 3.13 |
|  | (11.23 to 12.3) | (9.04 to 9.93) | (9.01 to 9.89) | (8.43 to 9.25) | (7.88 to 8.63) | (7.24 to 7.99) | (6.81 to 7.53) | (4.89 to 5.72) | (4.25 to 5.15) | (2.81 to 3.47) |
| Discounted Total Cost ( $£$ ) | 50,584 | 51,903 | 51,327 | 36,142 | 33,044 | 30,594 | 46,996 | 39,783 | 55,840 | 37,585 |
|  | (24,303 to 75,854) | $(37,916$ to 66,162) | $(36,516$ to 66,462$)$ | ( 24,488 to 47,536 ) | ( 23,585 to 42,216 ) | ( 23,020 to 37,973) | $(41,366$ to 53,069$)$ | ( 35,838 to 43,908) | $(51,382$ to 60,404) | ( 33,889 to 41,411) |
| Discounted CVD Cost (£) | 29,761 | 31,868 | 32,299 | 23,261 | 22,355 | 20,945 | 35,745 | 27,768 | 42,329 | 26,617 |
|  | (8,221 to 50,480) | ( 20,286 to 43,646) | $(20,207$ to 44,658$)$ | (13,539 to 32,797) | $(14,311$ to 30,135$)$ | $(14,628$ to 27,275$)$ | $(30,895$ to 40,959$)$ | ( 24,445 to 31,302) | $(38,845$ to 46,060) | ( 23,951 to 29,343) |
| Discounted CHD Cost ( $£$ ) | 18,416 | 21,848 | 22,619 | 15,548 | 18,950 | 17,807 | 25,830 | 21,053 | 30,662 | 21,092 |
|  | $(1,374$ to 34,848$)$ | (12,697 to 31,162) | $(13,083$ to 32,403$)$ | (7,815 to 23,110) | $(12,577$ to 25,131) | $(12,773$ to 22,833) | $(21,899$ to 30,004) | (18,329 to 23,888) | ( 27,953 to 33,524 ) | (19,070 to 23,216) |
| Time to first event (years) | 24.23 | 17.59 | 17.26 | 15.72 | 14.29 | 12.89 | 11.84 | 10.44 | 8.69 | 5.27 |
|  | (23.95 to 24.51) | (17.26 to 17.9) | (16.93 to 17.58) | (15.36 to 16.09) | (13.98 to 14.57) | (12.43 to 13.31) | (11.37 to 12.27) | (10.02 to 10.85) | (7.97 to 9.44) | (4.7 to 5.85) |
| MI as primary endpoint (\%) <br> Ischaemic stroke as primary endpoint (\%) | 3.6 | 3.7 | 5.24 | 5.62 | 7.18 | 7.44 | 7.6 | 6.84 | 10.42 | 12.35 |
|  | (3.05 to 4.2) | (3.22 to 4.2) | (4.66 to 5.82) | (4.9 to 6.32) | (6.56 to 7.89) | (6.57 to 8.39) | (6.72 to 8.54) | (6.19 to 7.53) | (9.12 to 11.73) | (11.5 to 13.19) |
|  | 3.63 | 4.38 | 4.4 | 3.94 | 3.64 | 3.89 | 6.7 | 5.02 | 7.1 | 4.52 |
|  | (3.03 to 4.2) | (3.7 to 5.06) | (3.82 to 5.04) | (3.34 to 4.53) | (3.18 to 4.13) | (3.18 to 4.65) | (5.59 to 7.88) | (4.44 to 5.59) | (6.02 to 8.17) | (4.03 to 5.07) |
| Haemorragic stroke as primary endpoint (\%) | 0.67 | 0.69 | 0.75 | 0.8 | 0.84 | 0.83 | 0.93 | 0.95 | 0.88 | 0.68 |
|  | (0.44 to 1.02) | (0.51 to 0.93) | (0.59 to 0.95 ) | (0.65 to 0.96) | (0.7 to 0.98) | (0.7 to 0.98) | (0.79 to 1.1) | (0.79 to 1.11) | (0.71 to 1.07) | (0.53 to 0.86) |
| CVD Mortality (\%) | 2.9 | 4.38 | 6.23 | 8.66 | 10.38 | 12.28 | 14.95 | 22.57 | 25.44 | 36.67 |
|  | (2.04 to 3.97) | (3.35 to 5.65) | (5.13 to 7.26) | (7.3 to 10.02) | (8.97 to 11.43) | (10.65 to 13.82) | (12.77 to 17.27) | (20.19 to 25.09) | (21.99 to 29.88) | (34.08 to 39.35) |
| Non-CVD Mortality (\%) | 97.05 | 95.61 | 93.77 | 91.34 | 89.62 | 87.72 | 85.05 | 77.43 | 74.56 | 63.33 |
|  | (95.99 to 97.91) | (94.35 to 96.65) | (92.74 to 94.87) | (89.98 to 92.7) | (88.57 to 91.03) | (86.18 to 89.35) | (82.73 to 87.23) | (74.91 to 79.81) | (70.12 to 78.01) | (60.65 to 65.92) |
| * 1 year decrement post event <br> ** constant decrement post event |  |  |  |  |  |  |  |  |  |  |





|  | pegasus |  |  |  |  | odyssey |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scenario HR | 1 | 0.9 | 0.8 | 0.7 | 0.6 | 1 | 0.9 | 0.8 | 0.7 | 0.6 |
| Life years | 10.97 | 11.14 | 11.31 | 11.5 | 11.7 | (12.99 to 13.43) | 13.27 | 13.36 | 13.46 | 13.56 |
|  | (10.65 to 11.32) | (10.83 to 11.47) | (11.02 to 11.62) | (11.22 to 11.79) | (11.43 to 11.96) |  | (13.09 to 13.5) | (13.19 to 13.57) | (13.3 to 13.65) | (13.42 to 13.73) |
| QALYs* | 7.59 | 7.7 | 7.83 | 7.96 | 8.09 | $\begin{array}{r} 9.16 \\ \text { (8.63 to } 9.6 \text { ) } \end{array}$ | 9.22(8.69 to 9.65 ) | 9.29 | 9.36(8.82 to 9.78 ) | (8.88 to 9.85 ) |
|  | (7.09 to 8.01) | (7.21 to 8.12) | (7.32 to 8.24) | (7.44 to 8.37) | (7.57 to 8.51) |  |  | (8.75 to 9.72) |  |  |
| QALYs** | 7.44 | 7.57 | 7.7 | 7.84 | 7.99 | $\begin{array}{r} 9.03 \\ (8.52 \text { to } 9.45) \end{array}$ | $\begin{array}{r} 9.1 \\ \text { (8.59 to } 9.52 \text { ) } \end{array}$ | $\begin{array}{r} 9.18 \\ (8.67 \text { to } 9.6) \end{array}$ | $\begin{array}{rrr}9.26 & 9.34 \\ \text { (8.74 to } 9.67) & \text { (8.82 to } 9.75)\end{array}$ |  |
|  | (6.95 to 7.86) | (7.07 to 7.99) | (7.19 to 8.12) | (7.34 to 8.27) | (7.48 to 8.42) |  |  |  |  |  |  |
| Total Cost (£) | 63,576 | 64,058 | 64,575 | 65,131 | 65,729 | 65,510$(56,422$ to 75,258$)$ | $\begin{array}{r} 65,563 \\ (56,366 \text { to } 75,362) \end{array}$ | $\begin{array}{r} 65,619 \\ (56,275 \text { to } 75,470) \end{array}$ | 65,678$(56,223$ to 75,587$)$ | 65,740 |
|  | ( 57,426 to 69,784) | ( 57,853 to 70,298) | ( 58,308 to 70,873) | $(58,761$ to 71,536) | (59,306 to 72,117) |  |  |  |  | (56,239 to 75,728) |
| CVD Specific Cost (£) | 45,358 | 45,578 | 45,815 | 46,073 | 46,352 | $\begin{array}{r} 44,459 \\ (36,587 \text { to } 52,829) \end{array}$ | $\begin{array}{r} 44,397 \\ (36,440 \text { to } 52,818) \end{array}$ | $\begin{array}{r} 44,334 \\ (36,257 \text { to } 52,805) \end{array}$ | $\begin{array}{r} 44,269 \\ (36,088 \text { to } 52,731) \end{array}$ | $\begin{array}{r} 44,203 \\ (35,976 \text { to } 52,656) \end{array}$ |
|  | (40,271 to 50,611) | ( 40,412 to 50,892) | ( 40,616 to 51,180) | $(40,711$ to 51,439$)$ | $(40,815$ to 51,844$)$ |  |  |  |  |  |
| CHD Specific Cost (£) | 35,489 | 35,604 | 35,730 | 35,866 | 36,016 | $\begin{array}{r} 31,905 \\ (25,558 \text { to } 38,565) \end{array}$ | $\begin{array}{r} 31,826 \\ (25,394 \text { to } 38,523) \end{array}$ | $\begin{array}{r} 31,745 \\ (25,262 \text { to } 38,442) \end{array}$ | $\begin{array}{r} 31,662 \\ (25,098 \text { to } 38,363) \end{array}$ | $\begin{array}{r} 31,576 \\ (24,929 \text { to } 38,327) \end{array}$ |
|  | ( 31,406 to 39,666) | ( 31,416 to 39,804 ) | ( 31,448 to 39,965 ) | ( 31,524 to 40,185) | (31,606 to 40,388) |  |  |  |  |  |
| Discounted Life Years | 8.61 | 8.73 | 8.85 | 8.97 | 9.1 | $\begin{array}{r} 10.09 \\ (9.97 \text { to } 10.24) \end{array}$ | $\begin{array}{r} 10.15 \\ (10.04 \text { to } 10.29) \end{array}$ | $\begin{array}{r} 10.21 \\ \text { (10.11 to } 10.34 \text { ) } \end{array}$ | $\begin{array}{r} 10.28 \\ (10.18 \text { to } 10.4) \end{array}$ | 10.34(10.26 to 10.45 ) |
|  | (8.4 to 8.84) | (8.52 to 8.94) | (8.65 to 9.05) | (8.78 to 9.16) | (8.93 to 9.28 ) |  |  |  |  |  |
| Discounted QALYs* | 5.97 | 6.05 | 6.13 | 6.22 | 6.31 | $\begin{array}{r} 7.03 \\ (6.65 \text { to } 7.35) \end{array}$ | $\begin{array}{r} 7.07 \\ \text { (6.69 to } 7.39 \text { ) } \end{array}$ | $\begin{array}{r} 7.11 \\ \text { (6.73 to } 7.43 \text { ) } \end{array}$ | $\begin{array}{r} 7.16 \\ (6.77 \text { to } 7.48) \end{array}$ | (6.81 to 7.52) |
|  | (5.6 to 6.28) | (5.68 to 6.36) | (5.76 to 6.44) | (5.84 to 6.53) | (5.93 to 6.62) |  |  |  |  |  |
| Discounted QALYs** | 5.86 | 5.95 | 6.04 | 6.14 | 6.24 | $\begin{array}{r} 6.94 \\ (6.57 \text { to } 7.25) \end{array}$ | $\begin{array}{r} 6.99 \\ (6.61 \text { to } 7.3 \text { ) } \end{array}$ | $\begin{array}{r} 7.04 \\ (6.67 \text { to } 7.35) \end{array}$ | $\begin{array}{r} 7.1 \\ (6.72 \text { to } 7.4) \end{array}$ | $\begin{array}{r} 7.15 \\ (6.78 \text { to } 7.46) \end{array}$ |
|  | (5.5 to 6.18) | (5.59 to 6.27) | (5.67 to 6.36) | (5.77 to 6.46) | (5.87 to 6.56) |  |  |  |  |  |
| Discounted Total Cost (£) | 47,695 | 47,954 | 48,231 | 48,527 | 48,843 | 47,262$(41,188$ to 53,678$)$ | 47,269 | 47,276 | 47,284 | 47,291 |
|  | (43,550 to 51,732) | ( 43,716 to 51,981) | $(43,972$ to 52,314$)$ | $(44,213$ to 52,644$)$ | $(44,533$ to 53,049$)$ |  | $(41,144$ to 53,706) | $(41,102$ to 53,730$)$ | ( 41,028 to 53,768) | (40,999 to 53,808) |
| Discounted CVD Cost (£) | 34,093 | 34,187 | 34,288 | 34,398 | 34,517 | $\begin{array}{r} 32,084 \\ (26,847 \text { to } 37,563) \end{array}$ | $\begin{array}{r} 32,019 \\ (26,724 \text { to } 37,525) \end{array}$ | $\begin{array}{r} 31,951 \\ (26,622 \text { to } 37,486) \end{array}$ | $\begin{array}{r} 31,882 \\ (26,488 \text { to } 37,426) \end{array}$ | $\begin{array}{r} 31,811 \\ (26,351 \text { to } 37,364) \end{array}$ |
|  | ( 30,689 to 37,556 ) | ( 30,744 to 37,685 ) | $(30,801$ to 37,840$)$ | $(30,862$ to 37,999$)$ | $(30,927$ to 38,155) |  |  |  |  |  |
|  | 26,929 | 26,966 | 27,007 | 27,052 | 27,102 | $\begin{array}{r} 23,272 \\ (19,049 \text { to } 27,623) \end{array}$ | $\begin{array}{r} 23,203 \\ (18,933 \text { to } 27,575) \end{array}$ | $\begin{array}{r} 23,131 \\ (18,815 \text { to } 27,526) \end{array}$ | $\begin{array}{r} 23,058 \\ (18,694 \text { to } 27,462) \end{array}$ | $\begin{array}{r} 22,983 \\ (18,569 \text { to } 27,388) \end{array}$ |
| Discounted CHD Cost ( $£$ ) | ( 24,194 to 29,707) | ( 24,182 to 29,763) | ( 24,171 to 29,834) | $(24,176$ to 29,928) | ( 24,170 to 30,025) |  |  |  |  |  |
| Time to first event (years) | 9.11 | 9.42 | 9.74 | 10.09 | 10.45 | $\begin{array}{r} 11.6 \\ (11.47 \text { to } 11.72) \end{array}$ | $\begin{array}{r} 11.82 \\ \text { (11.7 to } 11.94 \text { ) } \end{array}$ | $\begin{array}{r} 12.05 \\ (11.93 \text { to } 12.16) \end{array}$ | $\begin{array}{r} 12.28 \\ (12.17 \text { to } 12.39) \end{array}$ | $\begin{array}{r} 12.53 \\ (12.42 \text { to } 12.63) \end{array}$ |
|  | (8.79 to 9.4) | (9.11 to 9.7) | (9.44 to 10.02) | (9.79 to 10.35) | (10.16 to 10.7) |  |  |  |  |  |
|  | 20.59 | 19.06 | 17.44 | 15.71 | 13.88 | $\begin{array}{r} 10.15 \\ (9.85 \text { to } 10.48) \end{array}$ | $\begin{array}{r} 9.29 \\ \text { (9 to } 9.59 \text { ) } \end{array}$ | $\begin{array}{r} 8.39 \\ \text { (8.13 to } 8.67 \text { ) } \end{array}$ | $\begin{array}{r} 7.47 \\ \text { (7.23 to } 7.72 \text { ) } \end{array}$ | $\begin{array}{r} 6.51 \\ (6.29 \text { to } 6.73) \end{array}$ |
| MI as primary endpoint (\%) | (19.89 to 21.36) | (18.39 to 19.8) | (16.79 to 18.15) | (15.11 to 16.39) | (13.32 to 14.5) |  |  |  |  |  |
| Ischaemic stroke as primary endpoint (\%) | 6.88 | 6.4 | 5.89 | 5.33 | 4.73 | $\begin{array}{r} 7.7 \\ (7.37 \text { to } 8.03) \end{array}$ | $\begin{array}{r} 7.06 \\ (6.76 \text { to } 7.37) \end{array}$ | $\begin{array}{r} 6.4 \\ (6.12 \text { to } 6.68) \end{array}$ | $\begin{array}{r} 5.7 \\ (5.45 \text { to } 5.96) \end{array}$ | $\begin{array}{r} 4.99 \\ (4.76 \text { to } 5.22) \end{array}$ |
|  | (6.4 to 7.46) | (5.94 to 6.95) | (5.45 to 6.41) | (4.93 to 5.82) | (4.36 to 5.18) |  |  |  |  |  |
| Haemorragic stroke as primary endpoint (\%) | 0.75 | 0.77 | 0.8 | 0.83 | 0.86 | $\begin{array}{r} 0.73 \\ (0.64 \text { to } 0.82) \end{array}$ | $\begin{array}{r} 0.74 \\ (0.65 \text { to } 0.84) \end{array}$ | $\begin{array}{r} 0.75 \\ (0.67 \text { to } 0.86) \end{array}$ | $\begin{array}{r} 0.77 \\ (0.68 \text { to } 0.87) \end{array}$ | $\begin{array}{r} 0.78 \\ (0.69 \text { to } 0.89) \end{array}$ |
|  | (0.66 to 0.84) | (0.69 to 0.87) | (0.71 to 0.9) | (0.74 to 0.93) | (0.76 to 0.97) |  |  |  |  |  |
| CVD Mortality (\%) | 25.3 | 23.59 | 21.75 | 19.76 | 17.61 | 14.92(13.15 to 16.44$)$ | $\begin{array}{r} 13.72 \\ \text { (12.09 to } 15.14 \text { ) } \end{array}$ | $\begin{array}{r} 12.48 \\ \text { (10.98 to } 13.78 \text { ) } \end{array}$ | $\begin{array}{r} 11.17 \\ \text { ( } 9.83 \text { to } 12.36 \text { ) } \end{array}$ | $\begin{array}{r} 9.81 \\ (8.63 \text { to } 10.87) \end{array}$ |
|  | (23.14 to 28.22) | (21.53 to 26.39) | (19.8 to 24.38) | (17.98 to 22.21) | (16 to 19.84) |  |  |  |  |  |
|  | 74.7 | 76.41 | 78.25 | 80.24 | 82.39 | $\begin{array}{r} 85.08 \\ \text { (83.56 to } 86.84 \text { ) } \end{array}$ | $\begin{array}{r} 86.28 \\ (84.86 \text { to } 87.91) \end{array}$ | $\begin{array}{r} 87.52 \\ \text { (86.22 to } 89.02 \text { ) } \end{array}$ | $\begin{array}{r} 88.83 \\ (87.64 \text { to } 90.17) \end{array}$ | $\begin{array}{r} 90.19 \\ (89.13 \text { to } 91.37) \end{array}$ |
| Non-CVD Mortality (\%) | (71.78 to 76.86) | (73.61 to 78.47) | (75.62 to 80.2) | (77.79 to 82.02) | (80.16 to 84) |  |  |  |  |  |

[^2]



[^0]:    * 1 year decrement post event
    ** constant decrement post event

[^1]:    * 1 year decrement post event
    ** constant decrement post event

[^2]:    * 1 year decrement post event
    ** constant decrement post event

