TY - JOUR T1 - Evidence of microvascular dysfunction in heart failure with preserved ejection fraction JF - Heart JO - Heart SP - 278 LP - 284 DO - 10.1136/heartjnl-2015-308403 VL - 102 IS - 4 AU - Joshua F Lee AU - Zachary Barrett-O'Keefe AU - Ryan S Garten AU - Ashley D Nelson AU - John J Ryan AU - Jose N Nativi AU - Russell S Richardson AU - D Walter Wray Y1 - 2016/02/15 UR - http://heart.bmj.com/content/102/4/278.abstract N2 - Objective While vascular dysfunction is well defined in patients with heart failure (HF) with reduced ejection fraction (HFrEF), disease-related alterations in the peripheral vasculature of patients with HF with preserved ejection fraction (HFpEF) are not well characterised. Thus, we sought to test the hypothesis that patients with HFpEF would demonstrate reduced vascular function, at the conduit artery and microvascular levels, compared with controls.Methods We examined conduit artery function via brachial artery flow-mediated dilation (FMD) and microvascular function via reactive hyperaemia (RH) following 5 min of ischaemia in 24 patients with Class II–IV HFpEF and 24 healthy controls matched for age, sex and brachial artery diameter.Results FMD was reduced in patients with HFpEF compared with controls (HFpEF: 3.1±0.7%; Controls: 5.1±0.5%, p=0.03). However, shear rate at time of peak brachial artery dilation was lower in patients with HFpEF compared with controls (HFpEF: 42 070±4018/s; Controls: 69 018±9509/s, p=0.01), and when brachial artery FMD was normalised for the shear stimulus, cumulative area-under-the-curve (AUC) at peak dilation, the between-group differences were eliminated (HFpEF: 0.11±0.03%/AUC; Controls: 0.09±0.01%/AUC, p=0.58). RH, assessed as AUC, was lower in patients with HFpEF (HFpEF: 454±35 mL; Controls: 660±63 mL, p<0.01).Conclusions Collectively, these data suggest that maladaptations at the microvascular level contribute to the pathophysiology of HFpEF, while conduit artery vascular function is not diminished beyond that which occurs with healthy aging. ER -