Model | N | Vessels | Diagnostic accuracy (AUC) compared with ICA-FFR | CTCA (AUC) | Correlation with ICA-FFR | Agreement (bias and agreement unless stated) |
Siemens cFFR V.1.4 (Coenen et al 2015) | 106 | 189 | 0.83 | 0.64 | r=0.59 | -0.04±0.13 (LOA: −0.31 to 0.22) |
FFRCT DISCOVER-FLOW (Koo et al 2011) | 103 | 159 | 0.92 | 0.70 | r=0.72 | 0.02±0.12 |
FFRCT DeFACTO study (Min et al 2012) | 252 | 407 | 0.81 | 0.68 | r=0.63 | 0.058; (95% CI, 0.05-0.07) (mean difference) |
FFRCT NXT trial (Nørgaard et al 2014) | 254 | 484 | 0.90 | 0.81 | r=0.82 | 0.03 (LOA: −0.12 to 0.17) |
Toshiba CT-FFR (Ko et al 2017) | 30 | 58 | 0.88 | 0.77 | r=0.57 | 0.065±0.14 (LOA: −0.20 to 0.33) |
NOVEL-FLOW (Chung et al 2017) | 117 | 218 | 0.93 | 0.74 | r=0.76 | 0.01±0.08 (LOA: −0.14 to 0.17) |
vFAI (Siogkas et al 2019) | 63 | 74 | 0.97 | 0.56 | r=0.93 | 0.03±0.04 (−0.05 to 0.12) |
Several algorithms have demonstrated superior diagnostic performance of CT-FFR compared with CTCA. A good correlation has been observed in most studies, with a small bias observed compared with invasive FFR.
AUC, area under the curve; CTCA, CT coronary angiography; FFR, fractional flow reserve; ICA-FFR, invasive coronary angiography and FFR; LOA, limits of agreement; vFAI, Virtual Functional Assessment Index.