Skip to main content
Log in

Ventilatory and lactate threshold determinations in healthy normals and cardiac patients: methodological problems

  • Original Article
  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Abstract

In healthy normal individuals (n = 69), coronary patients with myocardial ischaemia (n = 27) and patients with chronic heart failure (CHF, n = 33), four widely applied methods to determine ventilatory threshold (VT) were analysed: V-slope, ventilatory equivalent for O2 (EqO2), gas exchange ratio (R) and end-tidal partial pressure of oxygen. Lactate threshold [LAT, log lactate vs log oxygen uptake (\(\dot V{\text{O}}_2 \))] was also determined. Analysis focused on rate of success of threshold determination, comparability of threshold methods, reproducibility and interobserver variability. Cycle ergometry protocols with ramp-like mode and graded steady-state mode used in exercise testing were considered separately. In healthy normal individuals and coronary patients with myocardial ischaemia, at least three VT could be determined during ramp-like mode and two VT during graded steady-state mode, 82% of the time. For CHF patients, the rate of successful determination of VT was lower. Compared to LAT, \(\dot V{\text{O}}_2 \) at VT was significantly higher using R and EqO2 methods of VT determination in healthy normal subjects (P < 0.01), and significantly higher when using all four methods in coronary patients (P < 0.01 or P < 0.05, respectively). No difference was observed between \(\dot V{\text{O}}_2 \) at VT and LAT in CHF patients. In healthy normal individuals, day-to-day reproducibility of VT and LAT was high (error of a single determination from duplicate determinations was between 3.9% and 6.2% corresponding to a \(\dot V{\text{O}}_2 \) of 52.2 and 89.2 ml·min −1). Interobserver variability was low (error between 0.3% and 5% corresponding to a \(\dot V{\text{O}}_2 \) of 9.8 and 68 ml·min). In CHF patients, interobserver variability was moderately greater (error between 4.6% and 8.2%, corresponding to a \(\dot V{\text{O}}_2 \) of 35.1 and 62.4 ml·min−1). To optimize threshold determination, standardized procedures are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreas S, Breska B von, Kopp E, Figulla HR, Kreuzer H (1993) Periodic respiration in patients with heart failure. Clin Invest 71:281–285

    Google Scholar 

  • Bachl N (1984) Specificity and test precision of the anaerobic threshold. In: Löllgen H, Mellerowicz H (eds) Progress in ergometry: quality control and test criteria. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bortz J (1977) Lehrbuch der Statistik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1985) Improved detection of lactate threshold during exercise using a log-log transformation. J Appl Physiol 59:1936–1940

    Google Scholar 

  • Beaver WL, Wasserman K, Whipp BL (1986) A new method for detecting the anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    Google Scholar 

  • Behrens S, Andresen D, Brüggemann T, Ehlers C, Schröder R (1994) Reproduzierbarkeit der symptomlimitierten Sauerstoffaufnahme und der anaeroben Schwelle im Rahmen spiroergometrischer Untersuchungen bei Patienten mit Herzinsuffizienz. Z Kardiol 83:44–49

    Google Scholar 

  • Byczynski M (1994) EBIO 6666-Lakatanalyzer mit Biosensor. In: Clasing D, Weicker L, Boning D (eds) Stellenwert der Laktatbestimmung in der Leistungsdiagnostik. Fischer, Stuttgart Jena New York, pp 241–249

    Google Scholar 

  • Coats AJS, Adamopoulos S, Radaelli A, McCane A, Meyer TE, Bemardi L, Solda PL, Davey P, Ormerod O, Forfar C, Conway J, Sleight P (1992) Controlled trial of physical training in chronic heart failure. Circulation 85:2119–2131

    Google Scholar 

  • Dahlbeg G (1948) Statistical methods for medical and biological studies. Allen and Unwin, London

    Google Scholar 

  • Drexler H, Banhardt U, Meinertz T, Wollschläger H, Lehmann M, Just H (1989) Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure. A double-blind, placedo-controlled trial. Circulation 79:491–502

    Google Scholar 

  • Gitt AK, Winter UJ, Fritsch J, Pothoff G, Sedlak M, Ehmanns S, Ostmann H, Hilger HH (1994) Vergleich von vier verschiedenen Methoden zur repiratorischen Bestimmung der anaeroben Schwelle bei Normalpersonen, Herz- und Lungenkranken. Z Kardiol 83 [Suppl]: 3 VII-VIII, 37–42

    Google Scholar 

  • Gladden LB, Yates JW, Stremel RW, Stamford BA (1985) Gas exchange and lactate anaerobic thresholds: inter- and intraevaluator agreement. J Appl Physiol 58:2082–2089

    Google Scholar 

  • Hollmann H, Schürch P, Heck H, Liesen H, Mader A, Rost R, Hellmann W (1987) Kardiopulmonale Reaktionen und aerobanaerobe Schwelle bei verschiedenen Belastungsformen. Dtsch Z Sportmed 38:144–156

    Google Scholar 

  • Itoh H, Taniguchi K, Koike A, Doi M (1990) Evaluation of severity of heart failure using ventilatory gas analysis. Circulation 81[Suppl II]:31–37

    Google Scholar 

  • Katz S, Berkowitz R, Le Jemtel T (1992) Anaerobic threshold detection in patients with congestive heart failure. Am J Cardiol 69:1565–1569

    Google Scholar 

  • Kremser CB, O'Toole MF, Leff AR (1987) Oscillatory hyperventilation in severe congestive heart failure secondary to idiopathic dilated cardiomyopathy or to ischemic cardiomyopathy. Am J Cardiol 59:900–905

    Google Scholar 

  • Lipkin DP, Perrins J, Poole-Wilson PA (1985) Respiratory gas exchange in the assessment of patients with impaired ventricular function. Br Heart J 54:321–328

    Google Scholar 

  • Matsumura N, Nishijma H, Kojima S, Hashimoto F, Minami M, Yashuda H (1983) Determination of anaerobic threshold for assessment of functional state in patients with chronic heart failure. Circulation 68:360–367

    Google Scholar 

  • Metra M, Raddino R, Dei Cas L, Visioloi O (1990) Assessment of peak oxygen consumption, lactate and ventilatory thresholds and correlation with resting and exercise hemodynamic data in chronic congestive heart failure. Am J Cardiol 65:1127–1133

    Google Scholar 

  • Meyer K, Hajric R, Samek L, Baier M, Lauber P, Betz P, Roskamm H (1994) Cardiopulmonary exercise capacity in healthy normals of different age. Cardiology 85:341–351

    Google Scholar 

  • Meyer K, Samek L, Pinchas A, Baier M, Betz P, Roskamm H (1995) Relationship between ventilatory threshold and onset of ischemia in ECG during stress test. Eur Heart J 16:623–630

    Google Scholar 

  • Meyer K, Stengele E, Samek L, Westbrook S, Hajric R, Lehmann M, Baumann A, Schwaibold M, Lauber P, Hauf G, Baier M, Görnandt L, Schnellbacher K, Betz P, Roskamm H (1994a) Relationship between noninvasive cardiopulmonary exercise testing and central hemodynamics in patients with severe chronic heart failure. Am J Noninvas Cardiol 8:340–345

    Google Scholar 

  • Miyagi K, Asanoi H, Ishizaka S, Kameyama T, Sasayama S (1993) Limited value of anaerobic threshold for assessing functional capacity in patients with heart failure. Clin Cardiol 16:133–137

    Google Scholar 

  • Pothoff G, Winter U, Waßermann L, Jäkel D, Steinach M (1994) Ergospirometrische Normalkollektivuntersuchungen für ein Unsteady-state-Stufentestprogramm. Z Kardiol 83: 116–123

    Google Scholar 

  • Shimizu M, Myers J, Buchanan N, Walsh D, Kraemer M, McAuley P, Froelicher VF (1991) The ventilaotry threshold: method, protocol and evaluator agreement. Am Heart J 122:509–516

    Google Scholar 

  • Simonton CA, Higginbotham MB, Cobb FR (1988) The ventilatory threshold: quantitative analysis of reproducibility and relation to arterial lactate concentration in normal subjects and in patients with chronic congestive heart failure. Am J Cardiol 62:100–107

    Google Scholar 

  • Sullivan MJ, Higginbotham MB, Cobb FR (1989) Exercise training in patients with chronic heart failure delays ventilatory anaerobic threshold and improves submaximal exercise performance. Circulation 79:324–329

    Google Scholar 

  • Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243

    Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R (1994) Principles of exercise testing and interpretation, 2nd edn. Lea and Febiger, Philadelphia

    Google Scholar 

  • Weber KT, Kinasewitz GT, Janicki JD, Fishman AP (1982) Oxygen utilization and ventilation during exercise in patients with chronic cardiac failure. Circulation 65:1213–1223

    Google Scholar 

  • Yeh MP, Gardner RM, Adams TD, Yanowitz FG, Crapo RO (1983) “Anaerobic threshold”: problems of determination and validation. J Appl Physiol 55:1178–1186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, K., Hajric, R., Westbrook, S. et al. Ventilatory and lactate threshold determinations in healthy normals and cardiac patients: methodological problems. Eur J Appl Physiol 72, 387–393 (1996). https://doi.org/10.1007/BF00242266

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242266

Key words

Navigation