Skip to main content
Log in

Shear-dependence of endothelial functions

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Endothelial cells are subjected to shear forces which influence important cell functions. Shear stress induces cell elongation and formation of stress fibers, increases permeability, pinocytosis and lipoprotein internalization, is involved in the formation of atherosclerotic lesions, increases the production of tissue plasminogen activator, and enhances von Willebrand factor release and hence platelet aggregation. It decreases adherence of erythrocytes and leukocytes, and increases the release of prostacyclin, endothelium derived relaxing factor, histamine and other compounds, but decreases erythropoietin secretion. The mechanism of signal transduction to the endothelial cell is not known exactly; shear-sensitive ion channels seem to be involved. It is concluded that a better understanding of shear-dependent endothelial functions will influence pathophysiologic concepts and therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alevriadou, B. R., Eskin, S. G., McIntire, L. V., and Schilling, W. P., Effect of shear stress on86Rb+ efflux from calf pulmonary artery endothelial cells. Ann. Biomed. Eng.21 (1993) 1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Alevriadou, B. R., Moake, J. L., Turner, N. A., Ruggeri, Z. M., Folie, B. J., Phillips, M. D., Schreiber, A. B., Hrinda, M. E., and McIntire, L. V., Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood81 (1993) 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  3. Ando, J., Komatsuda, T., Ischikawa, C., and Kamiya, A., Fluid shear stress enhanced DNA synthesis in cultured endothelial cells during repair of mechanical denudation. Biorheology27 (1990) 675–684.

    Article  CAS  PubMed  Google Scholar 

  4. Asakura, T., and Karino, T., Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circulation Res.66 (1990) 1045–1066.

    Article  CAS  PubMed  Google Scholar 

  5. Badimon, J. J., Fuster, V., Chesebro, J. H., and Badimon, L., Coronary atherosclerosis. A multifactorial disease. Circulation87 (suppl. II) (1993) 3–16.

    Google Scholar 

  6. Barabino, G. A., McIntire, L. V., Eskin, S. G., Sears, D. A., and Udden, M., Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood70 (1987) 152–157.

    Article  CAS  PubMed  Google Scholar 

  7. Bastida, E., Almirall, L., and Ordinas, A., Platelet and shear rate promote tumor cell adhesion to human endothelial extracellular matrix-Absence of a role for platelet cyclooxygenase. Thromb. Haemostas.61 (1989) 485–489.

    Article  CAS  Google Scholar 

  8. Baumgartner, H. R., The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res.5 (1973) 167–179.

    Article  CAS  PubMed  Google Scholar 

  9. Baumgartner, H. R., and Sakariassen, K. S., Factors controlling thrombus formation on arterial lesions. Ann. NY Acad. Sci.454 (1973) 167–179.

    Google Scholar 

  10. Bhagyalakshmi, A., Berthiaume, F., Reich, K. M., and Frangos, J. A., Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J. vasc. Res.29 (1992) 443–449.

    Article  CAS  PubMed  Google Scholar 

  11. Buga, G. M., Gold, M. E., Fukuto, J. M., and Ignarro, L. J., Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension17 (1991) 187–193.

    Article  CAS  PubMed  Google Scholar 

  12. Carosi, J. A., Eskin, S. G., and McIntire, L. V., Cyclical strain effects on production of vasoactive materials in cultured endothelial cells. J. Cell Physiol.151 (1992) 29–36.

    Article  CAS  PubMed  Google Scholar 

  13. Chien, S., Jan, K. M., and Simchon, S., Effects of blood viscosity on renin secretion. Biorheology27 (1990) 509–517.

    Article  Google Scholar 

  14. Chow, T. W., Hellums, J. D., Moake, J. L., and Kroll, M. H., Induced von Willebrand factor binding to platelet glycoprotein Ib initiates calcium influx associated with aggregation. Blood80 (1992) 113–120.

    Article  CAS  PubMed  Google Scholar 

  15. Christ, G., Steiffert, D., Hufnagl, P., Gessl, A., Woijta, J., and Binder, B. R., Type 1 plasminogen activator inhibitor synthesis of endothelial cells is downregulated by smooth muscle cells. Blood81 (1993) 1277–1283.

    Article  CAS  PubMed  Google Scholar 

  16. Davies, P. F., Dewey, C. F. Jr., Bussolari, S. R., Gordon, E. J., and Gimbrone, M. A. Jr., Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. clin. Invest.73 (1984) 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. Jr, and Gimbrone, M. A. Jr, Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. natl Acad. Sci. USA83 (1986) 2114–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeForrest, J. M., and Hollis, T. M., Shear stress and aortic histamine synthesis. Am. J. Physiol.,234 (Heart Circ. Physiol 3) (1978) H701-H705.

    CAS  PubMed  Google Scholar 

  19. Dewey, C. F. Jr, Bussolari, S. R., Gimbrone, M. A. Jr, and Davies, P. F., The dynamic response of vascular endothelial cells to fluid shear stress. ASME J. Biomech. Eng.103 (1981) 177–185.

    Article  Google Scholar 

  20. Diamond, S. L., Eskin, S. G., and McIntire, L. V., Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science243 (1989) 1483–1485.

    Article  CAS  PubMed  Google Scholar 

  21. Diamond, S. L., Sharefkin, J. B., Dieffenbach, C., Frasier-Scott, K., McIntire, L. V., and Eskin, S. G., Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J. Cell Physiol.143 (1990) 364–371.

    Article  CAS  PubMed  Google Scholar 

  22. Duguid, J. B., and Robertson, W. B., Mechanical factors in atherosclerosis. LancetI (1957) 1205–1209.

    Article  Google Scholar 

  23. Dull, R. O., and Davies, P. F., Flow modulation of agonist (ATP)-response (Ca2+) coupling in vascular endothelial cells. Am. J. Physiol. (Heart Circ Physiol)261 (1991) H149-H154.

    Article  CAS  Google Scholar 

  24. Esmon, C. T., The regulation of natural anticoagulant pathways. Science235 (1987) 1348–1352.

    Article  CAS  PubMed  Google Scholar 

  25. Frangos, J. A., Eskin, S. G., McIntire, L. V., and Ives, C. L., Flow effects on prostacyclin production by cultured human endothelial cells. Science227 (1985) 1477–1479.

    Article  CAS  PubMed  Google Scholar 

  26. Franke, R. P., Gräfe, M., Schnittler, H., Seiffge, D., and Mittermayer, C., Induction of human vascular endothelial stress fibers by fluid shear stress. Nature307 (1984) 648–9.

    Article  CAS  PubMed  Google Scholar 

  27. Goto, S., Ikeda, Y., Murata, M., Handa, M., Takahashi, E., Yoshioka, A., Fujimura, Y., Fukuyama, M., Handa, S., and Ogawa, S., Epinephrine augments von Willebrand factordependent shear-induced platelet aggregation. Circulation86 (1992) 1859–1863.

    Article  CAS  PubMed  Google Scholar 

  28. Grabowski, E. F., Jaffe, E. A., and Weksler, B. B., Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. clin. Med.105 (1985) 36–43.

    CAS  PubMed  Google Scholar 

  29. Gupte, A., and Frangos, J. A., Effects of flow on the synthesis and release of fibronectin by endothelial cells. In Vitro Cell Dev. Biol.26 (1990) 57–60.

    Article  CAS  PubMed  Google Scholar 

  30. Hsieh, H. J., Li, N. Q., and Frangos, J. A., Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am. J. Physiol260 (Heart Circ Physiol 29) (1991) H642-H646.

    CAS  PubMed  Google Scholar 

  31. Hsieh, H. J., Li, N. Q., and Frangos, J. A., Shear-induced platelet-derived growth factor gene expression in human endothelial cells is mediated by protein kinase C. J. Cell. Physiol.150 (1992) 552–558.

    Article  CAS  PubMed  Google Scholar 

  32. Inauen, W., Baumgartner, H. R., Bombeli, T., Haeberli, A., and Straub, P. W., Dose- and shear-dependent effects of heparin on thrombogenesis induced by rabbit aorta subendothelium exposed to flowing human blood. Arteriosclerosis10 (1990) 607–615.

    Article  CAS  PubMed  Google Scholar 

  33. Jo, H., Dull, R. O., Hollis, T. M., and Tarbell, J. M., Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol.260 (Heart Circ Physiol 29) (1991) H1992-H1996.

    CAS  PubMed  Google Scholar 

  34. Koller, A., and Kaley, G., Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am. J. Physiol.260 (Heart Circ Physiol 29) (1991) H862-H868.

    CAS  PubMed  Google Scholar 

  35. Kraiss, L. W., Kirkman, T. R., Kohler, T. R., Zierler, B., and Clowes, A. W., Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler. Thromb.11 (1991) 1844–1852.

    Article  CAS  PubMed  Google Scholar 

  36. Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillatory shear stress. Arteriosclerosis5 (1985) 293–302.

    Article  CAS  PubMed  Google Scholar 

  37. Kuchan, M. J., and Frangos, J. A., Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am. J. Physiol.264 (Heart Circ. Physiol. 33) (1993) H150-H156.

    CAS  PubMed  Google Scholar 

  38. Kuo, L., Davies, M. J., and Chilian, W. M., Endothelium-dependent flow-induced dilation of isolated coronary arterioles. Am. J. Physiol.259 (Heart Circ. Physiol. 28) (1990) H1063-H1070.

    CAS  PubMed  Google Scholar 

  39. Koury, S. T., Bondurant, M. C., Koury, M. J., Localization of erythropoietin synthesizing cells in murine kidney by in situ hybridization. Blood71 (1988) 524–527.

    Article  CAS  PubMed  Google Scholar 

  40. Lamontagne, D., Pohl, U., and Busse, R., Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circulation Res.70 (1992) 127–130.

    Article  Google Scholar 

  41. Langille, B. L., Graham, J. J. K., Kim, D., and Gotlieb, A. I., Dynamics of shear-induced redistribution of F-actin in endothelial cells in vivo. Arterioscler. Thromb.11 (1991) 1814–20.

    Article  CAS  PubMed  Google Scholar 

  42. Lansman, J. B., Hallam, T. J., and Rink, T. J., Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature325 (1987) 811–813.

    Article  CAS  PubMed  Google Scholar 

  43. Lasky, L. A., Selectins: Interpreters of cell-specific carbohydrate information during inflammation. Science258 (1992) 964–969.

    Article  CAS  PubMed  Google Scholar 

  44. Lawrence, M. B., Smith, C. W., Eskin, S. G., and McIntire, L. V., Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood75 (1990) 227–237.

    Article  CAS  PubMed  Google Scholar 

  45. Lawrence, M. B., and Springer, T. A., Leukocytes roll on a selectin at physiological flow rates: Distinction from and prerequisite for adhesion through integrins. Cell65 (1991) 859–873.

    Article  CAS  PubMed  Google Scholar 

  46. Levenson, J., Devynck, M. A., Pithois-Merli, I., Le Quan Sang K. H., Filitti, V., and Simon, A., Dynamic association between artery shear flow condition and platelet cytosolic free Ca2+ concentration in human hypertension. Clin. Sci.79 (1990) 613–618.

    Article  CAS  Google Scholar 

  47. Levesque, M. J., Liepsch, D., Moravec, S., and Nerem, R. M., Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis6 (1986) 220–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ludwig, H., Fritz, E., Kotzmann, H., Höcker, P., Gisslinger, H., and Barnas, U., Erythropoietin treatment of anemia associated with multiple myeloma. N. Engl. J. Med.322 (1990) 1693–1699.

    Article  CAS  PubMed  Google Scholar 

  49. Malek, A. M., Greene, A. L., and Izumo, S., Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. Proc. natl Acad. Sci. USA90 (1993) 5999–6003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malek, A. M., and Izumo, S., Physiological fluid shear stress causes down-regulation of endothelin-1 mRNA in bovine aortic endothelium. Am. J. Physiol.263 (Cell Physiol. 32) (1992) C389-C396.

    Article  CAS  PubMed  Google Scholar 

  51. Melkumyants, A. M., and Balashow, S. A., Effect of blood viscosity on arterial flow induced dilator response. Cardiovasc. Res.24 (1990) 165–168.

    Article  CAS  PubMed  Google Scholar 

  52. Mo, M., Eskin, S. G., and Schilling, W. P., Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am. J. Physiol.260 (Heart Circ. Physiol. 29) (1991) H1698-H1707.

    CAS  PubMed  Google Scholar 

  53. Montenegro, M. R., and Eggen, D. A., Topography of atherosclerosis in the coronary arteries. Lab. Invest.18 (1968) 586–593.

    CAS  PubMed  Google Scholar 

  54. Nabel, E. G., Selwyn, A. P., and Ganz, P., Large coronary arteries in humans are responsive to changing blood flow: An endothelium-dependent mechanism that fails in patients with atherosclerosis. J. Am. Coll. Cardiol.16 (1990) 349–356.

    Article  CAS  PubMed  Google Scholar 

  55. Nollert, M. U., Panero, N. J., and McIntire, L. V., Regulation of genetic expression in shear stress-stimulated endothelial cells. Ann. NY Acad. Sci.665 (1992) 94–104.

    Article  CAS  PubMed  Google Scholar 

  56. O'Brian, J. R., Shear-induced platelet aggregation. Lancet335 (1990) 711–713.

    Article  Google Scholar 

  57. Ohno, M., Gibbons, G. H., Lopez, F., Cooke, J. P., and Dzau, V. J., Shear stress induces transforming growth factor beta 1 (TGF-β1) expression via a flow-activated potassium channel. Clin. Res.40 (1992) 294A.

    Google Scholar 

  58. Olesen, S. P., Clapham, D. E., and Davies, P. F., Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature331 (1988) 168–170.

    Article  CAS  PubMed  Google Scholar 

  59. Ookawa, K., Sato, M., and Ohshima, N., Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress. J. Biomechanics25 (1992) 1321–1328.

    Article  CAS  Google Scholar 

  60. Penny, W. F., Weinstein, M. J., Salzman, E. W., and Ware, J. A., Correlation of circulating von Willebrand factor levels with cardiovascular hemodynamics. Circulation83 (1991) 1630–1636.

    Article  CAS  PubMed  Google Scholar 

  61. Perry, M. A., and Granger, D. N., Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J. clin. Invest.87 (1991) 1798–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pohl, U., Bausse, R., Kuon, E., and Bassenge, E., Pulsatile perfusion stimulates the release of endothelial autacoids. J. appl. Cardiol.1 (1986) 215–235.

    CAS  Google Scholar 

  63. Pohl, U., Herlan, K., Huang, A., and Bassenge, E., EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol.261 (Heart Circ. Physiol. 30) (1991) H2016-H2023.

    CAS  PubMed  Google Scholar 

  64. Pohl, U., Holtz, J., Busse, R., and Bassenge, E., Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension8 (1986) 37–44.

    Article  CAS  PubMed  Google Scholar 

  65. Predel, H.-G., Yang, Z., von Segesser, L., Turina, M., Bühler, F. R., and Lüscher, T. F., Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle. Lancet340 (1992) 878–879.

    Article  CAS  PubMed  Google Scholar 

  66. Puck, T. T., Cyclic AMP, the microtubule-microfilament system, and cancer. Proc. natl Acad. Sci. USA74 (1977) 4491–4495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reich, K. M., Gay, C. V., and Frangos, J. A., Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol.143 (1990) 100–104.

    Article  CAS  PubMed  Google Scholar 

  68. Ross, R., Raines, E. W., and Bowen-Pope, D. F., The biology of platelet-derived growth factor. Cell46 (1986) 155–169.

    Article  CAS  PubMed  Google Scholar 

  69. Rubanyi, G. M., Romero, J. C., and Vanhoutte, P. M., Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol.250 (Heart Circ. Physiol. 19) (1986) H1145-H1149.

    CAS  PubMed  Google Scholar 

  70. Sakariassen, K. S., Nievelstein, P. F. E. M., Coller, B. S., and Sixma, J. J., The role of platelet membrane glycoproteis Ib and IIb-IIIa in platelet adherence to human artery subendothelium. Bot. J. Haemat.63 (1986) 681–691.

    Article  CAS  Google Scholar 

  71. Sato, M., Levesque, M. J., Nerem, R. M., and Ohshima, N., Mechanical properties of cultured endothelial cells exposed to shear stress. Frontiers Med. Biol. Engng2 (1990) 171–5.

    CAS  Google Scholar 

  72. Schilling, W. P., Mo, M., and Eskin, S. G., Effect of shear stress on cytosolic Ca2+ of calf pulmonary artery endothelial cells. Expl Cell Res.198 (1992) 31–35.

    Article  CAS  Google Scholar 

  73. Schwarz, G., Droogmans, G., and Nilius, B., Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflügers Arch.421 (1992) 394–396.

    Article  CAS  PubMed  Google Scholar 

  74. Shen, J., Luscinskas, W., Connolly, A., Dewey, C. F. Jr, and Gimbrone, M. A. Jr, Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol.262 (Cell Physiol. 31) (1992) C384-C390.

    Article  CAS  PubMed  Google Scholar 

  75. Sherwood, J. B., Goldwasser, E., Chilcote, R., Carmichel, O. D., and Nagel, R. L., Sickle cell anemia patients have low erythropoietin levels for their degree of anemia. Blood67 (1986) 46–49.

    Article  CAS  PubMed  Google Scholar 

  76. Singh, A., Eckardt, K. U., Zimmermann, A., Götz, K. H., Hamann, M., Ratcliffe, P. J., Kurtz, A., and Reinhart, W. H., Increased plasma viscosity as a reason for inappropriate erythropoietin formation. J. clin. Invest.91 (1993) 251–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sprague, E. A., Steinbach, B. L., Nerem, R. M., and Schwartz, C. J., Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation76 (1987) 648–656.

    Article  CAS  PubMed  Google Scholar 

  78. Springer, T. A., Adhesion receptors of the immune system. Nature346 (1990) 425–434.

    Article  CAS  PubMed  Google Scholar 

  79. Texon, M., The hemodynamic concept of atherosclerosis. Bull. NY Acad. Med.36 (1960) 263–274.

    CAS  Google Scholar 

  80. Tijburg, P. N. M., Ijsseldijk, M. J. W., Sixma, J. J., and de Groot, P. G., Quantification of fibrin deposition and appearance of fibrin monomers. Arterioscler. Thromb.11 (1991) 211–220.

    Article  CAS  PubMed  Google Scholar 

  81. Tschopp, T. B., Weiss, H. J., and Baumgartner, H. R., Decreased adhesion of platelets to subendothelium in von Willebrand's disease. J. Lab. clin. Med.83 (1974) 296–300.

    CAS  PubMed  Google Scholar 

  82. Weiss, H. J., Turitto, V. T., and Baumgartner, H. R., Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects. J. clin. Invest.78 (1986) 1072–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wolinsky, H., and Glagov, S., A lamellar unit of aortic medial structure and function in mammals. Circulation Res.20 (1967) 99–111.

    Article  CAS  PubMed  Google Scholar 

  84. Wong, A. J., Pollard, T. D., and Hermann, I. M., Actin filament stress fibers in vascular endothelial cells in vivo. Science219 (1983) 867–9.

    Article  CAS  PubMed  Google Scholar 

  85. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kohayashi, M., Mitsui, T., Yazako, Y., Goto, K., and Masaki, T., A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, London332 (1988) 411–415.

    Article  CAS  PubMed  Google Scholar 

  86. Yedgar, S., Weinstein, D. B., Patsch, W., Schonfeld, G., Casanada, F. E., and Steinberg, D., Viscosity of culture medium as a regulator of synthesis and secretion of very low density lipoproteins by cultured hepatocytes. J. biol. Chem.257 (1982) 2188–2192.

    Article  CAS  PubMed  Google Scholar 

  87. Yoshizumi, M., Kurihara, H., Sugiyama, T., Takaku, F., Yanagisawa, M., Masaki, T., and Yazaki, Y., Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem. biophys. Res. Commun.161 (1989) 859–864.

    Article  CAS  PubMed  Google Scholar 

  88. Zwaginga, J. J., Sixma, J. J., and de Groot, P. G., Activation of endothelial cells induces platelet thrombus formation on their matrix. Studies of new in vitro thrombosis model with low molecular weight heparin as anticoagulant. Arteriosclerosis10 (1990) 49–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhart, W.H. Shear-dependence of endothelial functions. Experientia 50, 87–93 (1994). https://doi.org/10.1007/BF01984940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01984940

Key words

Navigation