Skip to main content

Advertisement

Log in

A frequent toll-like receptor (TLR)-2 polymorphism is a risk factor for coronary restenosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Restenosis is a major problem for patients undergoing percutaneous transluminal coronary angioplasty (PTCA). Inflammatory processes and genetic factors have been suggested to be involved in the pathogenesis of both atherosclerosis and restenosis. The recently discovered family of Toll-like receptors (TLRs) consists of molecules that initiate signaling after host-pathogen interactions. Recently it has been shown that the TLRs are involved in the development and progression of atherosclerosis by interfering with lipid metabolisms and by mediating inflammation. TLR-2 is a key innate immunity receptor for sensing both endogenous inflammatory mediators and ligands of several microbial pathogens postulated to be involved in atherosclerosis. A frequent single nucleotide polymorphism (SNP) for the TLR-2 gene, resulting in a non-functional receptor, has been described. By genotyping two independent groups of patients receiving PTCA, followed by stent implantation in one group, we found a significantly enhanced frequency of the TLR-2 Arg753Gln SNP in patients with restenosis as compared to those without restenosis (PTCA: 7.21 versus 2.45%, P=0.014; PTCA/stent: 6.86 versus 1.53%, P=0.013). In contrast, a common TLR-4 SNP was similarly distributed among the patient groups investigated. We furthermore compared the frequency of both SNPs in the patients with an age-matched group of individuals without atherosclerosis and found a trend towards a lower frequency of the TLR-4 SNP in the atherosclerotic group (PTCA: 5.58; PTCA/stent: 3.85 versus 7.14%). We conclude that in restenosis a functional TLR-2 is protective and potentially involved in a reaction pattern preventing restenosis. Screening for the TLR-2 Arg753Gln SNP may be of importance for stratifying a patient’s risk and for preventive and therapeutic measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    CAS  PubMed  Google Scholar 

  2. Rajagopal V, Rockson SG (2003) Coronary restenosis: a review of mechanisms and management. Am J Med 115:547–553

    Article  PubMed  Google Scholar 

  3. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  4. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GDO, Pepys MB, Gudnason V (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1287–1397

    Article  PubMed  Google Scholar 

  5. Mayr M, Kiechl S, Willeit J, Wick G, Xu Q (2000) Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 102:833–839

    CAS  PubMed  Google Scholar 

  6. Horne BD, Muhlestein JB, Strobel GG, Carlquist JF, Bair TL, Anderson JL (2002) Greater pathogen burden but not elevated C-reactive protein increases the risk of clinical restenosis after percutaneous coronary intervention. Am Heart J 144:491–500

    Article  PubMed  Google Scholar 

  7. Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403

    Article  CAS  PubMed  Google Scholar 

  8. Miller YI, Chang MK, Binder CJ, Shaw PX, Witztum JL (2003) Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol 14:437–445

    Article  CAS  PubMed  Google Scholar 

  9. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  10. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  11. Pasterkamp G, Van Keulen JK, De Kleijn DP (2004) Role of Toll-like receptor 4 in the initiation and progression of atherosclerotic disease. Eur J Clin Investig 34:328–334

    Article  CAS  Google Scholar 

  12. Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347:185–192

    Article  CAS  PubMed  Google Scholar 

  13. Ameziane N, Beillat T, Verpillat P, Chollet-Martin S, Aumont MC, Seknadji P, Lamotte M, Lebret D, Ollivier V, de Prost D (2003) Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol 23:e61–e64

    Article  PubMed  Google Scholar 

  14. Yang IA, Holloway JW, Ye S (2003) TLR4 Asp299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis 170:187–190

    Article  CAS  PubMed  Google Scholar 

  15. Sasu S, LaVerda D, Qureshi N, Golenbock DT, Beasley D (2001) Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res 89:244–250

    CAS  PubMed  Google Scholar 

  16. Rothfuchs AG, Trumstedt C, Wigzell H, Rottenberg ME (2004) Intracellular bacterial infection-induced IFN-gamma is critically but not solely dependent on Toll-like receptor 4—myeloid differentiation factor 88—IFN-alpha beta—STAT1 signaling. J Immunol 172:6345–6353

    CAS  PubMed  Google Scholar 

  17. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77:4588–4596

    Article  CAS  PubMed  Google Scholar 

  18. Prebeck S, Kirschning C, Durr S, da Costa C, Donath B, Brand K, Redecke V, Wagner H, Miethke T (2001) Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 167:3316–3323

    CAS  PubMed  Google Scholar 

  19. Kirschning CJ, Schumann RR (2002) TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr Top Microbiol Immunol 270:121–144

    CAS  PubMed  Google Scholar 

  20. Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105:1158–1161

    CAS  PubMed  Google Scholar 

  21. Fonarow GC, Horwich TB (2003) Prevention of heart failure: effective strategies to combat the growing epidemic. Rev Cardiovasc Med 4:8–17

    PubMed  Google Scholar 

  22. Scheuner MT (2001) Genetic predisposition to coronary artery disease. Curr Opin Cardiol 16:251–260

    Article  CAS  PubMed  Google Scholar 

  23. Karls U, Muller U, Gilbert DJ, Copeland NG, Jenkins NA, Harbers K (1992) Structure, expression, and chromosome location of the gene for the beta subunit of brain-specific Ca2+/calmodulin-dependent protein kinase II identified by transgene integration in an embryonic lethal mouse mutant. Mol Cell Biol 12:3644–3652

    CAS  PubMed  Google Scholar 

  24. Marenberg ME, Risch N, Berkman LF, Floderus B, Faire U de (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med 330:1041–1046

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Paigen B (2002) Comparative genetics of atherosclerosis and restenosis: exploration with mouse models. Arterioscler Thromb Vasc Biol 22:884–886

    Article  CAS  PubMed  Google Scholar 

  26. Schröder NW, Hermann C, Hamann L, Göbel UB, Hartung T, Schumann RR (2003) High frequency of polymorphism Arg753Gln of the Toll-like receptor-2 gene detected by a novel allele-specific PCR. J Mol Med 81:368–372

    PubMed  Google Scholar 

  27. Hamann L, Hamprecht A, Gomma AH, Schumann RR (2004) Rapid and inexpensive real time PCR for genotyping functional polymorphisms within the toll-like receptor-2, -4, and -9 genes. J Immunol Methods 285:281–291

    Article  CAS  PubMed  Google Scholar 

  28. Gomma AH, Elrayess MA, Knight CJ, Hawe E, Fox KM, Humphries SE (2002) The endothelial nitric oxide synthase (Glu298Asp and -786T→C) gene polymorphisms are associated with coronary in-stent restenosis. Eur Heart J 23:1955–1962

    Article  CAS  PubMed  Google Scholar 

  29. Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101:10679–10684

    Article  CAS  PubMed  Google Scholar 

  30. Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT, Freeman MW (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10:416–421

    Article  PubMed  Google Scholar 

  31. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  CAS  PubMed  Google Scholar 

  32. Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263

    Article  CAS  PubMed  Google Scholar 

  33. Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, Krieken JH van, Hartung T, Adema G, Kullberg BJ (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172:3712–3718

    CAS  PubMed  Google Scholar 

  34. Frothingham C (1911) The relationship between acute infectious diseases and arterial lesions. Arch Intern Med 8:153–162

    Google Scholar 

  35. Fabricant CG, Fabricant J, Litrenta MM, Minick CR (1978) Virus-induced atherosclerosis. J Exp Med 148:335–340

    Article  CAS  PubMed  Google Scholar 

  36. Kuo CC, Grayston JT, Campbell LA, Goo YA, Wissler RW, Benditt EP (1995) Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15–34 years old). Proc Natl Acad Sci USA 92:6911–6914

    CAS  PubMed  Google Scholar 

  37. Kowalski M, Rees W, Konturek PC, Grove R, Scheffold T, Meixner H, Brunec M, Franz N, Konturek JW, Pieniazek P, Hahn EG, Konturek SJ, Thale J, Warnecke H (2002) Detection of Helicobacter pylori specific DNA in human atheromatous coronary arteries and its association to prior myocardial infarction and unstable angina. Dig Liver Dis 34:398–402

    Article  CAS  PubMed  Google Scholar 

  38. Lalla E, Lamster IB, Hofmann MA, Bucciarelli L, Jerud AP, Tucker S, Lu Y, Papapanou PN, Schmidt AM (2003) Oral infection with a periodontal pathogen accelerates early atherosclerosis in apolipoprotein E-null mice. Arterioscler Thromb Vasc Biol 23:1405–1411

    Article  CAS  PubMed  Google Scholar 

  39. Gibson FC III, Hong C, Chou HH, Yumoto H, Chen J, Lien E, Wong J, Genco CA (2004) Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 109:2801–2806

    Article  PubMed  Google Scholar 

  40. Melnick JL, Petrie BL, Dreesman GR, Burek J, McCollum CH, DeBakey ME (1983) Cytomegalovirus antigen within human arterial smooth muscle cells. Lancet 2:644–647

    Article  CAS  PubMed  Google Scholar 

  41. Witherell HL, Smith KL, Friedman GD, Ley C, Thom DH, Orentreich N, Vogelman JH, Parsonnet J (2003) C-reactive protein, Helicobacter pylori, Chlamydia pneumoniae, cytomegalovirus and risk for myocardial infarction. Ann Epidemiol 13:170–177

    Article  PubMed  Google Scholar 

  42. Gurfinkel E, Bozovich G, Daroca A, Beck E, Mautner B (1997) Randomised trial of roxithromycin in non-Q-wave coronary syndromes: ROXIS pilot study, ROXIS study group. Lancet 350:404–407

    Article  CAS  PubMed  Google Scholar 

  43. Hollestelle SC, De Vries MR, Van Keulen JK, Schoneveld AH, Vink A, Strijder CF, Van Middelaar BJ, Pasterkamp G, Quax PH, De Kleijn DP (2004) Toll-like receptor 4 is involved in outward arterial remodeling. Circulation 109:393–398

    Article  CAS  PubMed  Google Scholar 

  44. Hashimoto M, Asai Y, Ogawa T (2004) Separation and structural analysis of lipoprotein in a lipopolysaccharide preparation from Porphyromonas gingivalis. Int Immunol 16:1431–1437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG [Innate Immunity, Project Schr 726, 1-2 (to N.W.J.S. and R.R.S.), SFB 633-03, Project A7 (to R.R.S.)], and by the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf R. Schumann.

Additional information

L. Hamann and A. Gomma contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamann, L., Gomma, A., Schröder, N.W.J. et al. A frequent toll-like receptor (TLR)-2 polymorphism is a risk factor for coronary restenosis. J Mol Med 83, 478–485 (2005). https://doi.org/10.1007/s00109-005-0643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0643-7

Keywords

Navigation