Skip to main content
Log in

Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans—first results

  • Short communication
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Recently published data indicated 18F-fluorocholine to be feasible for imaging vulnerable atherosclerotic plaques in an animal model.

Methods

Five patients undergoing whole-body 18F-fluoromethylcholine-(18F-FMCH-) PET/CT for imaging of prostate cancer disease were retrospectively evaluated. Whole-body PET scans were started immediately after i.v. injection of 18F-FMCH. About 5-15 min after tracer injection, acquisition of scans of the pelvis and abdomen was performed. PET, CT, and PET/CT slices were generated for review and visual analyses of the abdominal aorta and the common iliac arteries were performed. Vascular findings in examined arteries and surrounding structures due to artifacts were excluded from further analysis. The lower threshold of 18F-FMCH uptake was set above the background activity within the examined vessels. Morphological classification of vessel wall alterations (WA) included structural wall alterations without additional calcification (SWA), structural wall alterations associated with calcifications (SWC), and solely calcified lesions (CL). They were correlated with 18F-FMCH uptake qualified as present and vice versa.

Results

A total of 31 WA were identified. Positive 18F-FMCH uptake was found in 14 lesions (SWA: n = 5; SWC: n = 9). Sixteen of 17 18F-FMCH negative lesions were identified as CL without additional structural vessel wall alteration. One SWA did not show any 18F-FMCH accumulation. None of the CLs as well as unaltered parts of the vessel wall showed 18F-FMCH uptake.

Conclusions

Our initial data in five patients with a total of 31 vessel wall alterations show promising results indicating for the first time the feasibility of 18F-FMCH for in vivo imaging of structural WA in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular disease. I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001;104:2746-53.

    Article  CAS  PubMed  Google Scholar 

  2. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient. A call for new definitions and risk assessment strategies: Part I. Circulation 2003;108:1664-72.

    Article  PubMed  Google Scholar 

  3. Myerburg RJ, Interian A Jr, Mitrani RM, Kessler KM, Castellanos A. Frequency of sudden cardiac death and profiles of risk. Am J Cardiol 1997;80:10F-19F.

    Article  CAS  PubMed  Google Scholar 

  4. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262-75.

    Article  CAS  PubMed  Google Scholar 

  5. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657-71.

    Article  CAS  PubMed  Google Scholar 

  6. Davies MJ. A macro and micro view of coronary vascular insult in ischemic heart disease. Circulation 1990;82(suppl II):II-38-II-46.

    CAS  Google Scholar 

  7. Choudhury RP, Fuster V, Fayad ZA. Molecular, cellular, and functional imaging of atherothrombosis. Nat Rev Drug Discov 2004;3:913-25.

    Article  CAS  PubMed  Google Scholar 

  8. Matter CM, Wyss MT, Meier P, Späth N, von Lukowicz T, Lohmann C, et al. 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 2006;26:584-9.

    Article  CAS  PubMed  Google Scholar 

  9. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002;106:2200-6.

    Article  PubMed  Google Scholar 

  10. Viles-Gonzalez JF, Poon M, Sanz J, Ruis T, Nikolaou K, Fayad ZA, et al. In vivo 16-slice, multidetector-row computed tomography for the assessment of experimental atherosclerosis: comparison with magnetic resonance imaging and histopathology. Circulation 2004;110:1467-72.

    Article  PubMed  Google Scholar 

  11. Takaya N, Yuan C, Chu B, Saam T, Polissar NL, Jarvik GP, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation 2005;111:2768-75.

    Article  PubMed  Google Scholar 

  12. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. 18F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245-50.

    CAS  PubMed  Google Scholar 

  13. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with 18-F-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.

    Article  CAS  PubMed  Google Scholar 

  14. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115-26.

    Article  CAS  PubMed  Google Scholar 

  15. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell 2001;104:503-16.

    Article  CAS  PubMed  Google Scholar 

  16. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18-F-FDG uptake and arterial wall calcifications using 18-F-FDG PET/CT. J Nucl Med 2004;45:1245-50.

    Google Scholar 

  17. Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 2003;229:831-7.

    Article  PubMed  Google Scholar 

  18. Laitinen I, Marjamäki P, Haaparanta M, Savisto N, Laine VJO, Soini SL, et al. Non-specific binding of 18-F-FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries. Eur J Nucl Med Mol Imaging 2006;33:1461-7.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshimoto M, Waki A, Obata A, Furukawa T, Yonekura Y, Fujibayashi Y. Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol 2004;31:859-65.

    Article  CAS  PubMed  Google Scholar 

  20. Schmid DT, John H, Zweifel R, Cservenyak T, Westra G, Goerres GE, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005;235:623-8.

    Article  PubMed  Google Scholar 

  21. Haeffner EW. Studies on choline permeation through the plasma membrane and its incorporation into phosphatidyl choline of Ehrlich-Lettre-ascites tumor cells in vitro. Eur J Biochem 1975;51:219-28.

    Article  CAS  PubMed  Google Scholar 

  22. Katz-Brull R, Degani H. Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res 1996;16:1375-80.

    CAS  PubMed  Google Scholar 

  23. Boggs KP, Rock CO, Jackowski S. Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J Biol Chem 1995;270:7757-64.

    Article  CAS  PubMed  Google Scholar 

  24. Ramirez de Molina A, Gutierrez R, Ramos MA, Silva JM, Silva J, Bonilla F, et al. Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene 2002;21:4317-22.

    Article  CAS  PubMed  Google Scholar 

  25. Wyss MT, Weber B, Honer M, Spath N, Ametamey SM, Westera G, et al. 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 2004;31:312-6.

    Article  CAS  PubMed  Google Scholar 

  26. Spaeth N, Wyss MT, Weber B, Scheidegger S, Lutz A, Verwey J, et al. Uptake of 18F-fluorocholine, 18F-fluoroethyl-l-tyrosine, and 18F-FDG in acute cerebral radiation injury in the rat: implications for separation of radiation necrosis from tumor recurrence. J Nucl Med 2004;45:1931-8.

    CAS  PubMed  Google Scholar 

  27. DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN, et al. Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 2001;61:110-7.

    CAS  PubMed  Google Scholar 

  28. Henriksen G, Herz M, Hauser A, Schwaiger M, Wester HJ. Synthesis and preclinical evaluation of the choline transport tracer deshydroxy-[18F]fluorocholine ([18F]dOC). Nucl Med Biol 2004;31:851-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bucerius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucerius, J., Schmaljohann, J., Böhm, I. et al. Feasibility of 18F-fluoromethylcholine PET/CT for imaging of vessel wall alterations in humans—first results. Eur J Nucl Med Mol Imaging 35, 815–820 (2008). https://doi.org/10.1007/s00259-007-0685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0685-x

Keywords

Navigation