Skip to main content
Log in

Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

To assess image quality and radiation exposure with prospectively gated axial CT coronary angiography (PGA) compared to retrospectively gated helical techniques (RGH). Forty patients with suspected coronary artery disease (CAD) and a stable heart rate below 65 bpm underwent CT coronary angiography (CTCA) using a 64-channel CT system. The patient cohort consisted of 20 consecutive patients examined using a PGA technique and 20 patients examined using a standard RGH technique. Both groups were matched demographically according to age, gender, body mass index, and heart rate. For both groups, two independent observers assessed image quality for all coronary segments on an ordinal scale from 1 (nonassessable) to 5 (excellent quality). Image quality and radiation exposure were compared between patient groups. There were no significant differences in vessel-based image quality between the two groups (P > 0.05). Mean (± SD) effective radiation exposure in the PGA group was 3.7 ± 0.8 mSv compared to 18.9 ± 3.8 mSv in the RGH group without ECG-based tube current modulation (P < 0.001). Preliminary experience shows PGA technique to be a promising approach for CTCA resulting in a substantial reduction in radiation exposure with image quality comparable to that of standard RGH technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leschka S et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241(2):378–385

    Article  PubMed  Google Scholar 

  2. Dewey M, Hoffmann H, Hamm B (2006) Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries. RöfFo 178(6):600–604

    PubMed  CAS  Google Scholar 

  3. Hoffmann MH et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293(20):2471–2478

    Article  PubMed  CAS  Google Scholar 

  4. Katritsis D et al (2000) Radiation exposure of patients and coronary arteries in the stent era: a prospective study. Catheter Cardiovasc Interv 51(3):259–264

    Article  PubMed  CAS  Google Scholar 

  5. Watson LE, Riggs MW, Bourland PD (1997) Radiation exposure during cardiology fellowship training. Health Phys 73(4):690–693

    Article  PubMed  CAS  Google Scholar 

  6. Miller SW, Castronovo FP Jr (1985) Radiation exposure and protection in cardiac catheterization laboratories. Am J Cardiol 55(1):171–176

    Article  PubMed  CAS  Google Scholar 

  7. Kocinaj D et al (2006) Radiation dose exposure during cardiac and peripheral arteries catheterisation. Int J Cardiol 113(2):283–284

    Article  PubMed  CAS  Google Scholar 

  8. Dewey M et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145(6):407–415

    PubMed  Google Scholar 

  9. Hoffmann U et al (2006) Cardiac CT in emergency department patients with acute chest pain. Radiographics 26(4):963–978, discussion 979–80

    Article  PubMed  Google Scholar 

  10. Trabold T et al (2003) Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. RöFo 175(8):1051–1055

    PubMed  CAS  Google Scholar 

  11. Mori S et al (2008) Effective doses in subjects undergoing computed tomography cardiac imaging with the 256-multislice CT scanner. Eur J Radiol 65(3):442–448

    Article  PubMed  Google Scholar 

  12. Poll LW et al (2002) Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing”): phantom measurements. RöFo 174(12):1500–1505

    PubMed  CAS  Google Scholar 

  13. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3):317–323

    Article  PubMed  CAS  Google Scholar 

  14. Einstein AJ et al (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116(11):1290–1305

    Article  PubMed  Google Scholar 

  15. Thomas CK et al (2006) Coronary artery calcium scoring with multislice computed tomography: in vitro assessment of a low tube voltage protocol. Invest Radiol 41(9):668–673

    Article  PubMed  Google Scholar 

  16. Hsieh J et al (2006) Step-and-shoot data acquisition and reconstruction for cardiac x-ray computed tomography. Med Phys 33(11):4236–4248

    Article  PubMed  Google Scholar 

  17. Husmann L et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29(2):191–197

    Article  PubMed  Google Scholar 

  18. Schoenhagen P (2008) Back to the future: coronary CT angiography using prospective ECG triggering. Eur Heart J 29(2):153–154

    Article  PubMed  Google Scholar 

  19. Earls JP et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753

    Article  PubMed  Google Scholar 

  20. Shuman WP et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248(2):431–437

    Article  PubMed  Google Scholar 

  21. Vembar M et al (2003) A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT. Med Phys 30(7):1683–1693

    Article  PubMed  CAS  Google Scholar 

  22. Austen WG et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4 Suppl):5–40

    PubMed  CAS  Google Scholar 

  23. Heuscher DJ, Chandra S (2003) Multi-phase cardiac imager. US patent no. 6,510,337. http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6510337.PN.&OS=PN/6510337&RS=PN/6510337. Accessed 28 July 2008

  24. Manzke R et al (2003) Adaptive temporal resolution optimization in helical cardiac cone beam CT reconstruction. Med Phys 30(12):3072–3080

    Article  PubMed  CAS  Google Scholar 

  25. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428

    Article  PubMed  CAS  Google Scholar 

  26. European Commission (1999) European guidelines on quality criteria for computed tomography. Report EUR 16262 EN. Office for Official Publication of the European Communities, Luxembourg. http://www.drs.dk/guidelines/ct/quality/index.htm. Accessed 28 July 2008

  27. Karaca M et al (2007) Contrast-enhanced 64-slice computed tomography in detection and evaluation of anomalous coronary arteries Tohoku. J Exp Med 213(3):249–259

    Google Scholar 

  28. Marano R et al (2007) Coronary artery bypass grafts and MDCT imaging: what to know and what to look for. Eur Radiol 17(12):3166–3178

    Article  PubMed  Google Scholar 

  29. Zhang ZH et al (2006) Comparison of coronary artery bypass graft imaging between 64-slice and 16-slice spiral CT (in Chinese). Zhongguo Yi Xue Ke Xue Yuan Xue Bao 28(1):21–25

    PubMed  Google Scholar 

  30. Huda W, Vance A (2007) Patient radiation doses from adult and pediatric CT. AJR Am J Roentgenol 188(2):540–546

    Article  PubMed  Google Scholar 

  31. Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17(8):2028–2037

    Article  PubMed  Google Scholar 

  32. Jakobs TF et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12(5):1081–1086

    Article  PubMed  Google Scholar 

  33. Johnson TR et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415

    Article  PubMed  Google Scholar 

  34. Stolzmann P et al (2008) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18(3):592–599

    Article  PubMed  Google Scholar 

  35. Jung B et al (2003) Individually weight-adapted examination protocol in retrospectively ECG-gated MSCT of the heart. Eur Radiol 13(12):2560–2566

    Article  PubMed  CAS  Google Scholar 

  36. Abada HT et al (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECG-pulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 186(6 Suppl 2):S387–S390

    Article  PubMed  Google Scholar 

  37. Jakobs TF et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12(5):1081–1086

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been exclusively financed from research funds provided by the state of Baden-Württemberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Klass.

Additional information

This paper has not yet been submitted for publication elsewhere.

The abstract was accepted for presentation in the scientific sessions of ESR 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klass, O., Jeltsch, M., Feuerlein, S. et al. Prospectively gated axial CT coronary angiography: preliminary experiences with a novel low-dose technique. Eur Radiol 19, 829–836 (2009). https://doi.org/10.1007/s00330-008-1222-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-1222-4

Keywords

Navigation