Skip to main content
Log in

DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To prospectively compare induced DNA double-strand breaks by cardiac computed tomography (CT) and conventional coronary angiography (CCA).

Methods

56 patients with suspected coronary artery disease were randomised to undergo either CCA or cardiac CT. DNA double-strand breaks were assessed in fluorescence microscopy of blood lymphocytes as indicators of the biological effects of radiation exposure. Radiation doses were estimated using dose–length product (DLP) and dose–area product (DAP) with conversion factors for CT and CCA, respectively.

Results

On average there were 0.12 ± 0.06 induced double-strand breaks per lymphocyte for CT and 0.29 ± 0.18 for diagnostic CCA (P < 0.001). This relative biological effect of ionising radiation from CCA was 1.9 times higher (P < 0.001) than the effective dose estimated by conversion factors would have suggested. The correlation between the biological effects and the estimated radiation doses was excellent for CT (r = 0.951, P < 0.001) and moderate to good for CCA (r = 0.862, P < 0.001). One day after radiation, a complete repair of double-strand breaks to background levels was found in both groups.

Conclusions

Conversion factors may underestimate the relative biological effects of ionising radiation from CCA. DNA double-strand break assessment may provide a strategy for individualised assessments of radiation.

Key Points

• Radiation dose causes concern for both conventional coronary angiography and cardiac CT.

Estimations of the biological effects of ionising radiation may become feasible.

Fewer DNA double-strand breaks are induced by cardiac CT than CCA.

Conversion factors may underestimate the relative effects of ionising radiation from CCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCA:

conventional coronary angiography

DAP:

dose–area product

DLP:

dose–length product

DNA:

deoxyribonucleic acid

DSB:

DNA double-strand break

FCS:

fetal calf serum

PBS:

phosphate buffered saline

RPMI:

Roswell Park Memorial Institute

References

  1. Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  2. Mettler FA, Bhargavan M, Faulkner K et al (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources −1950-2007. Radiology 253:520–531

    Article  PubMed  Google Scholar 

  3. Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857

    Article  PubMed  CAS  Google Scholar 

  4. Chen J, Einstein AJ, Fazel R et al (2010) Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population-based analysis. J Am Coll Cardiol 56:702–711

    Article  PubMed  Google Scholar 

  5. Gerber TC, Carr JJ, Arai AE et al (2009) Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation 119:1056–1065

    Article  PubMed  Google Scholar 

  6. Mark DB, Berman DS, Budoff MJ et al (2010) ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 Expert Consensus Document on Coronary Computed Tomographic Angiography Catheterization and Cardiovascular Interventions 76:E1-E42

  7. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–177

    PubMed  Google Scholar 

  8. Mountford PJ, Temperton DH (1992) Recommendations of the International Commission on Radiological Protection (ICRP) 1990. Eur J Nucl Med 19:77–79

    Article  PubMed  CAS  Google Scholar 

  9. Pierce DA, Preston DL (2000) Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 154:178–186

    Article  PubMed  CAS  Google Scholar 

  10. Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248:995–1003

    Article  PubMed  Google Scholar 

  11. Le Heron JC (1992) Estimation of effective dose to the patient during medical x-ray examinations from measurements of the dose-area product. Phys Med Biol 37:2117–2126

    Article  PubMed  Google Scholar 

  12. Leung KC, Martin CJ (1996) Effective doses for coronary angiography. Br J Radiol 69:426–431

    Article  PubMed  CAS  Google Scholar 

  13. Geleijns J, Joemai RM, Dewey M et al (2011) Radiation exposure to patients in a multicenter coronary angiography trial (CORE 64). AJR Am J Roentgenol 196:1126–1132

    Article  PubMed  Google Scholar 

  14. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305

    Article  PubMed  Google Scholar 

  15. Little MP, Wakeford R, Tawn EJ, Bouffler SD, Berrington de Gonzalez A (2009) Risks associated with low doses and low dose rates of ionizing radiation: why linearity may be (almost) the best we can do. Radiology 251:6–12

    Article  PubMed  Google Scholar 

  16. Schlattl H, Zankl M, Petoussi-Henss N (2007) Organ dose conversion coefficients for voxel models of the reference male and female from idealized photon exposures. Phys Med Biol 52:2123–2145

    Article  PubMed  CAS  Google Scholar 

  17. Kobayashi J, Iwabuchi K, Miyagawa K et al (2008) Current topics in DNA double-strand break repair. J Radiat Res (Tokyo) 49:93–103

    Article  CAS  Google Scholar 

  18. Rothkamm K, Horn S (2009) Gamma-H2AX as protein biomarker for radiation exposure. Ann Ist Super Sanita 45:265–271

    PubMed  CAS  Google Scholar 

  19. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323

    Article  PubMed  CAS  Google Scholar 

  20. Einstein AJ (2009) Radiation protection of patients undergoing cardiac computed tomographic angiography. JAMA 301:545–547

    Article  PubMed  CAS  Google Scholar 

  21. Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507

    Article  PubMed  CAS  Google Scholar 

  22. Morrish OW, Goldstone KE (2008) An investigation into patient and staff doses from X-ray angiography during coronary interventional procedures. Br J Radiol 81:35–45

    Article  PubMed  CAS  Google Scholar 

  23. Beels L, Bacher K, De Wolf D, Werbrouck J, Thierens H (2009) Gamma-H2AX Foci as a biomarker for patient X-ray exposure in pediatric cardiac catheterization. Are we underestimating radiation risks? Circulation 20:1903–1909

    Article  Google Scholar 

  24. Geisel D, Heverhagen JT, Kalinowski M, Wagner HJ (2008) DNA double-strand breaks after percutaneous transluminal angioplasty. Radiology 248:852–859

    Article  PubMed  Google Scholar 

  25. Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V (2007) Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 242:244–251

    Article  PubMed  Google Scholar 

  26. Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875

    Article  PubMed  Google Scholar 

  27. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257:158–166

    Article  PubMed  Google Scholar 

  28. Löbrich M, Rief N, Kühne M et al (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci USA 102:8984–8989

    Article  PubMed  Google Scholar 

  29. Tripodi D, Lyons S, Davies D (1971) Separation of peripheral leukocytes by Ficoll density gradient centrifugation. Transplantation 11:487–488

    Article  PubMed  CAS  Google Scholar 

  30. Carpenter AE, Jones TR, Lamprecht MR et al (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  PubMed  Google Scholar 

  31. Jost G, Golfier S, Pietsch H et al (2009) The influence of x-ray contrast agents in computed tomography on the induction of dicentrics and gamma-H2AX foci in lymphocytes of human blood samples. Phys Med Biol 54:6029–6039

    Article  PubMed  CAS  Google Scholar 

  32. Kataoka Y, Bindokas VP, Duggan RC, Murley JS, Grinda DJ (2006) Flow cytometric analysis of phosphorylated histone H2AX following exposure to ionizing radiation in human microvascular endothelial cells. J Radiat Res (Tokyo) 47:245–257

    Article  CAS  Google Scholar 

  33. Kuefner MA, Grudzenski S, Hamann J et al (2010) Effect of CT scan protocols on x-ray-induced DNA double-strand breaks in blood lymphocytes of patients undergoing coronary CT angiography. Eur Radiol 20:2917–2924

    Article  PubMed  CAS  Google Scholar 

  34. Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM (2009) H2AX: functional roles and potential applications. Chromosoma 118:683–692

    Article  PubMed  CAS  Google Scholar 

  35. Brenner DJ, Doll R, Goodhead DT et al (2003) Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci USA 100:13761–13766

    Article  PubMed  CAS  Google Scholar 

  36. Bogaert E, Bacher K, Thierens H (2008) A large-scale multicentre study in Belgium of dose area product values and effective doses in interventional cardiology using contemporary X-ray equipment. Radiat Prot Dosim 128:312–323

    Article  CAS  Google Scholar 

  37. Budoff MJ, Gupta M (2010) Radiation exposure from cardiac imaging procedures: do the risks outweigh the benefits? J Am Coll Cardiol 56:712–714

    Article  PubMed  Google Scholar 

  38. Bongartz JA, Golding JA, Jurik JA et al (2004) European Guidelines for Multislice Computed Tomography http://www.msct.eu/CT_Quality_Criteria.htm

  39. Einstein AJ, Elliston CD, Arai AE et al (2010) Radiation dose from single-heartbeat coronary CT Angiography performed with a 320-detector row volume scanner. Radiology 254:698–706

    Article  PubMed  Google Scholar 

  40. Seguchi S, Aoyama T, Koyama S, Fujii K, Yamauchi-Kawaura C (2010) Patient radiation dose in prospectively gated axial CT coronary angiography and retrospectively gated helical technique with a 320-detector row CT scanner. Med Phys 37:5579–5585

    Article  PubMed  Google Scholar 

  41. Schlattl H, Zankl M, Hausleiter J, Hoeschen C (2007) Local organ dose conversion coefficients for angiographic examinations of coronary arteries. Phys Med Biol 52:4393–4408

    Article  PubMed  CAS  Google Scholar 

  42. Frankenberg D, Frankenberg-Schwager M, Garg I et al (2002) Mutation induction and neoplastic transformation in human and human-hamster hybrid cells: Dependence on photon energy and modulation in the low-dose range. J Radiol Prot 22:A17

    Article  PubMed  CAS  Google Scholar 

  43. Frankenberg D, Binder A (1985) RBE Values for the Induction of DNA Double Strand Breaks as a Function of Photon Energy. Radiat Prot Dosim 13:157–159

    CAS  Google Scholar 

  44. Rübe CE, Fricke A, Wendorf J et al (2010) Accumulation of DNA double-strand breaks in normal tissues after fractionated irradiation. Int J Radiat Oncol Biol Phys 76:1206–1213

    Article  PubMed  Google Scholar 

  45. Joiner MC, Marples B, Lambin P, Short SC, Turesson I (2001) Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 49:379–389

    Article  PubMed  CAS  Google Scholar 

  46. Shao C, Folkard M, Michael BD, Prise KM (2004) Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci USA 101:13495–13500

    Article  PubMed  CAS  Google Scholar 

  47. Löbrich M, Shibata A, Beucher A et al (2010) Gamma H2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9:662–669

    Article  PubMed  Google Scholar 

  48. Deckbar D, Stiff T, Koch B, Reis C, Löbrich M, Jeggo PA (2010) The limitations of the G1-S checkpoint. Cancer Res 70:4412–4421

    Article  PubMed  CAS  Google Scholar 

  49. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  PubMed  CAS  Google Scholar 

  50. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245

    Article  PubMed  CAS  Google Scholar 

  51. Grudzenski S, Kuefner MA, Heckmann MB, Uder M, Löbrich M (2009) Contrast medium-enhanced radiation damage caused by CT examinations. Radiology 253:706

    Article  PubMed  Google Scholar 

  52. Adams FH, Norman A, Mello RS, Bass D (1977) Effect of radiation and contrast media on chromosomes. Preliminary report. Radiology 124:823–826

    PubMed  CAS  Google Scholar 

  53. Venneri L, Rossi F, Botto N et al (2009) Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council's Biological Effects of Ionizing Radiation VII Report. Am Heart J 157:118–124

    Article  PubMed  Google Scholar 

  54. Andreassi MG, Cioppa A, Botto N et al (2005) Somatic DNA damage in interventional cardiologists: a case–control study. FASEB J 19:998–999

    PubMed  CAS  Google Scholar 

  55. Maurer MH, Zimmermann E, Schlattmann P, Germershausen C, Hamm B, Dewey M (2012) Indications, imaging technique, and reading of cardiac computed tomography: survey of clinical practice. Eur Radiol 22:59–72

    Article  PubMed  CAS  Google Scholar 

  56. Miller JM, Dewey M, Vavere AL et al (2009) Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64. Eur Radiol 19:816–828

    Article  PubMed  Google Scholar 

  57. Achenbach S, Marwan M, Ropers D et al (2010) Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J 31:340–346

    Article  PubMed  Google Scholar 

  58. Achenbach S, Anders K, Kalender WA (2008) Dual-source cardiac computed tomography: image quality and dose considerations. Eur Radiol 18:1188–1198

    Article  PubMed  Google Scholar 

  59. aff GL, Chinnaiyan KM, Share DA et al (2009) Radiation dose from cardiac computed tomography before and after implementation of radiation dose-reduction techniques. JAMA 301:2340–2348

    Article  PubMed  CAS  Google Scholar 

  60. Lauer MS (2009) Elements of danger - the case of medical imaging. N Engl J Med 361:841–843

    Article  PubMed  CAS  Google Scholar 

  61. Brenner DJ, Hricak H (2010) Radiation exposure from medical imaging: time to regulate? JAMA 304:208–209

    Article  PubMed  CAS  Google Scholar 

  62. Zanzonico P, Rothenberg LN, Strauss HW (2006) Radiation exposure of computed tomography and direct intracoronary angiography: risk has its reward. J Am Coll Cardiol 47:1846–1849

    Article  PubMed  Google Scholar 

  63. Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169:2078–2086

    Article  PubMed  Google Scholar 

  64. McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF (2011) CT dose index and patient dose: they are not the same thing. Radiology 259:311–316

    Article  PubMed  Google Scholar 

  65. Pryor DB, Shaw L, McCants CB et al (1993) Value of the history and physical in identifying patients at increased risk for coronary artery disease. Ann Intern Med 118:81–90

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Conflict of interest

Dr. Dewey:

Significant: Research Grants: European Regional Development Fund, German Heart Foundation/German Foundation of Heart Research, Joint program from the German Science Foundation (DFG) and the German Federal Ministry and Education of Research (BMBF) for meta-analyses, GE Healthcare (Amersham), Bracco, Guerbet, and Toshiba Medical Systems.

Modest: Speakers Bureau: Toshiba Medical Systems, Guerbet, Cardiac MR Academy Berlin, and Bayer-Schering. Consultant: Guerbet.

Other: Cardiac CT Courses in Berlin: www.ct-kurs.de

Book Author: "Coronary CT Angiography", Springer, 2009, "Cardiac CT", Springer 2011.

Institutional master research agreements with Siemens Medical Solutions, Philips Medical Systems, and Toshiba Medical Systems. The terms of these agreements are managed by the legal department of Charité - Universitätsmedizin Berlin.

Dr. Hamm:

Research grants: GE Healthcare, Schering, Siemens Medical Solutions, and Toshiba Medical Systems.Speakers Bureau: Siemens Medical Solutions Schering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dewey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geisel, D., Zimmermann, E., Rief, M. et al. DNA double-strand breaks as potential indicators for the biological effects of ionising radiation exposure from cardiac CT and conventional coronary angiography: a randomised, controlled study. Eur Radiol 22, 1641–1650 (2012). https://doi.org/10.1007/s00330-012-2426-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2426-1

Keywords

Navigation