Skip to main content
Log in

Impaired Systolic torsion in dilated cardiomyopathy: Reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method

  • ORIGINAL CONTRIBUTION
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Left ventricular (LV) torsion plays an important role in squeezing the blood out of the heart. To characterize the systolic torsion in LV dysfunction, we studied using magnetic resonance imaging myocardial tagging method in 26 subjects: 17 patients with dilated cardiomyopathy (DCM, LV ejection fraction [EF], 27 ± 8%) and 9 healthy control subjects. Grid-tagged LV short-axis cine images were acquired at base, mid and apex levels. Tag-intersections were tracked during the systole, thereby determining rotation angle (positive indicated clockwise from the apex). Peak torsion was defined as the maximum difference in rotation angle between the base and apex. Time to peak torsion was expressed as % systole by dividing the time by a total systolic time. Amplitude of the rotation at peak was less in DCM than in controls at both the base (0.1 ± 2.9 vs. 2.6 ± 1.6°, < 0.05) and apex (−5.9 ± 5.3 vs. −11.2 ± 2.5°, < 0.01). Amplitude of peak torsion was then less in DCM than in controls (6.1 ± 3.4 vs. 13.6 ± 2.5°, < 0.001), and the timing of peak was earlier (66 ± 22 vs. 104 ± 16% systole, < 0.001). The amplitude of peak torsion was correlated with LVEF (r=0.74, < 0.001). In conclusion, amplitude of systolic torsion was impaired in proportion to LV function. Systolic torsion in LV dysfunction was characterized by the discontinuing counter-rotation of the apex to the base before end-systole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DCM:

dilated cardiomyopathy

ECG:

electrocardiogram

LV:

left ventricular

LVEDP:

LV end-diastolic pressure

LVEDV:

LV end-diastolic volume

LVEF:

LV ejection fraction

LVESV:

LV end-systolic volume

MR:

magnetic resonance

NYHA:

New York Heart Association

SPAMM:

spatial modulation of magnetization

References

  1. Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845

    PubMed  CAS  Google Scholar 

  2. Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R, Shapiro EP (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81:1236–1244

    PubMed  CAS  Google Scholar 

  3. Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP (1994) Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 28:629–635

    Article  PubMed  CAS  Google Scholar 

  4. Buckberg GD (2001) The structure and function of the helical heart and its buttress wrapping. II. Interface between unfolded myocardial band and evolution of primitive heart. Semin Thorac Cardiovasc Surg 13:320–332

    PubMed  CAS  Google Scholar 

  5. Buckberg GD, Coghlan HC, Torrent-Guasp F (2001) The structure and function of the helical heart and its buttress wrapping. VI. Geometric concepts of heart failure and use for structural correction. Semin Thorac Cardiovasc Surg 13:386–401

    PubMed  CAS  Google Scholar 

  6. Buckberg GD (2002) Basic science review: the helix and the heart. J Thorac Cardiovasc Surg 124:863–883

    Article  PubMed  Google Scholar 

  7. Coghlan HC, Coghlan AR, Buckberg GD, Gharib M,Cox JL (2001) The structure and function of the helical heart and its buttress wrapping. III. The electric spiral of the heart: The hypothesis of the anisotropic conducting matrix. Semin Thorac Cardiovasc Surg 13:333–341

    PubMed  CAS  Google Scholar 

  8. Dong SJ, Hees PS, Huang WM, Buffer SA Jr, Weiss JL, Shapiro EP (1999) Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol 277(3 Pt 2):H1053–H1060

    PubMed  CAS  Google Scholar 

  9. Eichhorn EJ, Willard JE, Alvarez L, Kim AS, Glamann DB, Risser RC, Grayburn PA (1992) Are contraction and relaxation coupled in patients with and without congestive heart failure? Circulation 85:2132–2139

    PubMed  CAS  Google Scholar 

  10. Fischer SE, McKinnon GC, Scheidegger MB, Prins W, Meier D, Boesiger P (1994) True myocardial motion tracking. Magn Reson Med 31:401–413

    PubMed  CAS  Google Scholar 

  11. Fonseca CG, Oxenham HC, Cowan BR, Occleshaw CJ, Young AA (2003) Aging alters patterns of regional nonuniformity in LV strain relaxation: a 3-D MR tissue tagging study. Am J Physiol Heart Circ Physiol 285:H621–H630

    PubMed  CAS  Google Scholar 

  12. Gibbons Kroeker CA, Tyberg JV, Beyar R (1995) Effects of load manipulations, heart rate, and contractility on left ventricular apical rotation.An experimental study in anesthetized dogs. Circulation 92:130–141

    PubMed  CAS  Google Scholar 

  13. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45:248–263

    PubMed  CAS  Google Scholar 

  14. Hansen DE, Daughters GT 2nd, Alderman EL, Ingels NB Jr, Miller DC (1988) Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ Res 62:941–952

    PubMed  CAS  Google Scholar 

  15. Hansen DE, Daughters GT 2nd, Alderman EL, Ingels NB, Stinson EB, Miller DC (1991) Effect of volume loading, pressure loading, and inotropic stimulation on left ventricular torsion in humans. Circulation 83:1315–1326

    PubMed  CAS  Google Scholar 

  16. Ingels NB Jr, Hansen DE, Daughters GT 2nd, Stinson EB, Alderman EL, Miller DC (1989) Relation between longitudinal, circumferential, and oblique shortening and torsional deformation in the left ventricle of the transplanted human heart. Circ Res 64:915–927

    PubMed  Google Scholar 

  17. Moon MR, Ingels NB Jr, Daughters GT 2nd, Stinson EB, Hansen DE, Miller DC (1994) Alterations in left ventricular twist mechanics with inotropic stimulation and volume loading in human subjects. Circulation 89:142–150

    PubMed  CAS  Google Scholar 

  18. Nagel E, Stuber M, Lakatos M, Scheidegger MB, Boesiger P, Hess OM (2000) Cardiac rotation and relaxation after anterolateral myocardial infarction. Coron Artery Dis 11:261–267

    Article  PubMed  CAS  Google Scholar 

  19. Nakatani S, White RD, Powell KA, Lever HM, Thomas JD (1996) Dynamic magnetic resonance imaging assessment of the effect of ventricular wall curvature on regional function in hypertrophic cardiomyopathy. Am J Cardiol 77:618–622

    Article  PubMed  CAS  Google Scholar 

  20. Rademakers FE, Buchalter MB, Rogers WJ, Zerhouni EA, Weisfeldt ML, Weiss JL, Shapiro EP (1992) Dissociation between left ventricular untwisting and filling. Accentuation by catecholamines. Circulation 85:1572–1581

    PubMed  CAS  Google Scholar 

  21. Rothfeld JM, LeWinter MM, Tischler MD (1998) Left ventricular systolic torsion and early diastolic filling by echocardiography in normal humans. Am J Cardiol 81:1465–1469

    Article  PubMed  CAS  Google Scholar 

  22. Sallin EA (1969) Fiber orientation and ejection fraction in the human left ventricle. Biophys J 9:954–964

    Article  PubMed  CAS  Google Scholar 

  23. Stuber M, Scheidegger MB, Fischer SE, Nagel E, Steinemann F, Hess OM, Boesiger P (1999) Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 100:361–368

    PubMed  CAS  Google Scholar 

  24. Taber LA, Yang M, Podszus WW (1996) Mechanics of ventricular torsion. J Biomech 29:745–752

    Article  PubMed  CAS  Google Scholar 

  25. Torrent-Guasp F, Ballester M, Buckberg GD, Carreras F, Flotats A, Carrio I, Ferreira A, Samuels LE, Narula J (2001) Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg 122:389–392

    Article  PubMed  CAS  Google Scholar 

  26. Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H (2005) Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 27:191–201

    Article  PubMed  Google Scholar 

  27. Urayama S, Matsuda T, Sugimoto N, Mizuta S, Yamada N, Uyama C (2000) Detailed motion analysis of the left ventricular myocardium using an MR tagging method with a dense grid. Magn Reson Med 44:73–82

    Article  PubMed  CAS  Google Scholar 

  28. Waldman LK, Nosan D, Villarreal F, Covell JW (1988) Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63:550–562

    PubMed  CAS  Google Scholar 

  29. Young AA, Imai H, Chang CN, Axel L (1994) Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization. Circulation 89:740–752

    PubMed  CAS  Google Scholar 

  30. Yun KL, Miller DC (1995) Torsional deformation of the left ventricle. J Heart Valve Dis 4(Suppl 2):S214–S220

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Nakatani MD.

Additional information

Presented in part at the Annual Scientific Session of ACC 2004 in New Orleans, USA There are no financial obligations that could lead to conflict of interest regarding this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanzaki, H., Nakatani, S., Yamada, N. et al. Impaired Systolic torsion in dilated cardiomyopathy: Reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res Cardiol 101, 465–470 (2006). https://doi.org/10.1007/s00395-006-0603-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-006-0603-6

Key words

Navigation