Skip to main content
Log in

Diastolic tolerance to systolic pressures closely reflects systolic performance in patients with coronary heart disease

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In animal experiments, elevating systolic pressures induces diastolic dysfunction and may contribute to congestion, a finding not yet translated to humans. Coronary surgery patients (63 ± 8 years) were studied with left ventricular (LV) pressure (n = 17) or pressure–volume (n = 3) catheters, immediately before cardiopulmonary bypass. Single-beat graded pressure elevations were induced by clamping the ascending aorta. Protocol was repeated after volume loading (n = 7). Consecutive patients with a wide range of systolic function were included. Peak isovolumetric LV pressure (LVPiso) ranged from 113 to 261 mmHg. With preserved systolic function, LVP elevations neither delayed relaxation nor increased filling pressures. With decreasing systolic function, diastolic tolerance to afterload progressively disappeared: relaxation slowed and filling pressures increased (diastolic dysfunction). In severely depressed systolic function, filling pressures increased even with minor LVP elevations, suggesting baseline load-dependent elevation of diastolic pressures. The magnitude of filling pressure elevation induced in isovolumetric heartbeats was closely and inversely related to systolic performance, evaluated by LVPiso (r = −0.96), and directly related to changes in the time constant of relaxation τ (r = 0.95). The maximum tolerated systolic LVP (without diastolic dysfunction) was similarly correlated with LVPiso (r = 0.99). Volume loading itself accelerated relaxation, but augmented afterload-induced upward shift of filling pressures (7.9 ± 3.7 vs. 3.0 ± 1.5; P < 0.01). The normal human response to even markedly increased systolic pressures is no slowing of relaxation and preservation of normal filling pressures. When cardiac function deteriorates, the LV becomes less tolerant, responding with slowed relaxation and increased filling pressures. This increase is exacerbated by volume loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atherton JJ, Moore TD, Lele SS, Thomson HL, Galbraith AJ, Belenkie I, Tyberg JV, Frenneaux MP (1997) Diastolic ventricular interaction in chronic heart failure. Lancet 349:1720–1724. doi:10.1016/S0140-6736(96)05109-4

    Article  PubMed  CAS  Google Scholar 

  2. Borbely A, Papp Z, Edes I, Paulus WJ (2009) Molecular determinants of heart failure with normal left ventricular ejection fraction. Pharmacol Rep. 61:139–145

    PubMed  CAS  Google Scholar 

  3. Borlaug BA, Kass DA (2008) Ventricular–vascular interaction in heart failure. Heart Fail Clin 4:23–36. doi:10.1016/j.hfc.2007.10.001

    Article  PubMed  Google Scholar 

  4. Borlaug BA, Lam CS, Roger VL, Rodeheffer RJ, Redfield MM (2009) Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol 54:410–418. doi:10.1016/j.jacc.2009.05.013

    Article  PubMed  Google Scholar 

  5. Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP, Kass DA (2007) Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol 50:1570–1577. doi:10.1016/j.jacc.2007.07.032

    Article  PubMed  Google Scholar 

  6. Burkhoff D, Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250:R1021–R1027

    PubMed  CAS  Google Scholar 

  7. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA (1998) Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol 32:1221–1227. doi:10.1016/S0735-1097(98)00374-X

    Article  PubMed  CAS  Google Scholar 

  8. Correia-Pinto J, Henriques-Coelho T, Roncon-Albuquerque R Jr, Lourenco AP, Melo-Rocha G, Vasques-Novoa F, Gillebert TC, Leite-Moreira AF (2009) Time course and mechanisms of left ventricular systolic and diastolic dysfunction in monocrotaline-induced pulmonary hypertension. Basic Res Cardiol 104:535–545. doi:10.1007/s00395-009-0017-3

    Article  PubMed  Google Scholar 

  9. De Hert SG, Gillebert TC, Ten Broecke PW, Mertens E, Rodrigus IE, Moulijn AC (1999) Contraction–relaxation coupling and impaired left ventricular performance in coronary surgery patients. Anesthesiology 90:748–757. doi:10.1097/00000542-199903000-00017

    Article  PubMed  Google Scholar 

  10. Eichhorn EJ, Willard JE, Alvarez L, Kim AS, Glamann DB, Risser RC, Grayburn PA (1992) Are contraction and relaxation coupled in patients with and without congestive heart failure? Circulation 85:2132–2139. doi:10.1161/01.CIR.85.6.2132

    Article  PubMed  CAS  Google Scholar 

  11. Falcao-Pires I, Palladini G, Goncalves N, van der Velden J, Moreira-Goncalves D, Miranda-Silva D, Salinaro F, Paulus WJ, Niessen HW, Perlini S, Leite-Moreira AF (2011) Distinct mechanisms for diastolic dysfunction in diabetes mellitus and chronic pressure-overload. Basic Res Cardiol 106:801–814. doi:10.1007/s00395-011-0184-x

    Article  PubMed  CAS  Google Scholar 

  12. Fukuta H, Little WC (2008) The cardiac cycle and the physiologic basis of left ventricular contraction, ejection, relaxation, and filling. Heart Fail Clin 4:1–11. doi:10.1016/j.hfc.2007.10.004

    Article  PubMed  Google Scholar 

  13. Gaasch WH, Delorey DE, Kueffer FJ, Zile MR (2009) Distribution of left ventricular ejection fraction in patients with ischemic and hypertensive heart disease and chronic heart failure. Am J Cardiol 104:1413–1415. doi:10.1016/j.amjcard.2009.06.064

    Article  PubMed  Google Scholar 

  14. Gaasch WH, Little WC (2007) Assessment of left ventricular diastolic function and recognition of diastolic heart failure. Circulation 116:591–593. doi:10.1161/CIRCULATIONAHA.107.716647

    Article  PubMed  Google Scholar 

  15. Gaasch WH, Zile MR (2004) Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med 55:373–394. doi:10.1146/annurev.med.55.091902.104417

    Article  PubMed  CAS  Google Scholar 

  16. Galderisi M, Cicala S, Caso P, De Simone L, D’Errico A, Petrocelli A, de Divitiis O (2002) Coronary flow reserve and myocardial diastolic dysfunction in arterial hypertension. Am J Cardiol 90:860–864. doi:10.1016/S0002-9149(02)02708-X

    Article  PubMed  Google Scholar 

  17. Gandhi SK, Powers JC, Nomeir AM, Fowle K, Kitzman DW, Rankin KM, Little WC (2001) The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med 344:17–22. doi:10.1056/NEJM200101043440103

    Article  PubMed  CAS  Google Scholar 

  18. Gelpi RJ, Pasipoularides A, Lader AS, Patrick TA, Chase N, Hittinger L, Shannon RP, Bishop SP, Vatner SF (1991) Changes in diastolic cardiac function in developing and stable perinephritic hypertension in conscious dogs. Circ Res 68:555–567. doi:10.1161/01.RES.68.2.555

    Article  PubMed  CAS  Google Scholar 

  19. Gillebert TC, Leite-Moreira AF, De Hert SG (1997) Relaxation-systolic pressure relation. A load-independent assessment of left ventricular contractility. Circulation 95:745–752. doi:10.1161/01.CIR.95.3.745

    Article  PubMed  CAS  Google Scholar 

  20. Grossman W (2000) Defining diastolic dysfunction. Circulation. 101:2020–2021

    Article  PubMed  CAS  Google Scholar 

  21. Heusch G (2009) Diastolic heart failure: a misNOmer. Basic Res Cardiol 104:465–467. doi:10.1007/s00395-009-0025-3

    Article  PubMed  Google Scholar 

  22. Ishizaka S, Asanoi H, Wada O, Kameyama T, Inoue H (1995) Loading sequence plays an important role in enhanced load sensitivity of left ventricular relaxation in conscious dogs with tachycardia-induced cardiomyopathy. Circulation 92:3560–3567. doi:10.1161/01.CIR.92.12.3560

    Article  PubMed  CAS  Google Scholar 

  23. Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF (2009) Acute neurohumoral modulation of diastolic function. Peptides 30:419–425. doi:10.1016/j.peptides.2008.10.018

    Article  PubMed  CAS  Google Scholar 

  24. Leite-Moreira AF, Correia-Pinto J (2001) Load as an acute determinant of end-diastolic pressure–volume relation. Am J Physiol Heart Circ Physiol 280:H51–H59

    PubMed  CAS  Google Scholar 

  25. Leite-Moreira AF, Correia-Pinto J, Gillebert TC (1999) Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction. Cardiovasc Res 43:344–353. doi:10.1016/S0008-6363(99)00099-1

    Article  PubMed  CAS  Google Scholar 

  26. Leite-Moreira AF, Gillebert TC (1994) Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation 90:2481–2491. doi:10.1161/01.CIR.90.5.2481

    Article  PubMed  CAS  Google Scholar 

  27. Leite-Moreira AF, Gillebert TC (1996) Myocardial relaxation in regionally stunned left ventricle. Am J Physiol 270:H509–H517

    PubMed  CAS  Google Scholar 

  28. MacIver DH (2010) Is remodeling the dominant compensatory mechanism in both chronic heart failure with preserved and reduced left ventricular ejection fraction? Basic Res Cardiol 105:227–234. doi:10.1007/s00395-009-0063-x

    Article  PubMed  Google Scholar 

  29. Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849. doi:10.1161/CIRCULATIONAHA.104.500546

    Article  PubMed  Google Scholar 

  30. Matsubara H, Takaki M, Yasuhara S, Araki J, Suga H (1995) Logistic time constant of isovolumic relaxation pressure–time curve in the canine left ventricle. Better alternative to exponential time constant. Circulation 92:2318–2326. doi:10.1161/01.CIR.92.8.2318

    Article  PubMed  CAS  Google Scholar 

  31. Munagala VK, Hart CY, Burnett JC Jr, Meyer DM, Redfield MM (2005) Ventricular structure and function in aged dogs with renal hypertension: a model of experimental diastolic heart failure. Circulation 111:1128–1135. doi:10.1161/01.CIR.0000157183.21404.63

    Article  PubMed  Google Scholar 

  32. Opdahl A, Remme EW, Helle-Valle T, Lyseggen E, Vartdal T, Pettersen E, Edvardsen T, Smiseth OA (2009) Determinants of left ventricular early-diastolic lengthening velocity: independent contributions from left ventricular relaxation, restoring forces, and lengthening load. Circulation 119:2578–2586. doi:10.1161/CIRCULATIONAHA.108.791681

    Article  PubMed  Google Scholar 

  33. Paulus WJ, Grossman W, Serizawa T, Bourdillon PD, Pasipoularides A, Mirsky I (1985) Different effects of two types of ischemia on myocardial systolic and diastolic function. Am J Physiol 248:H719–H728

    PubMed  CAS  Google Scholar 

  34. Raff GL, Glantz SA (1981) Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ Res 48:813–824. doi:10.1161/01.RES.48.6.813

    Article  PubMed  CAS  Google Scholar 

  35. Ritter M, Hess OM, Murakami T, Jenni R, Egloff L, Nonogi H, Schneider J, Krayenbuehl HP (1988) Left ventricular systolic series elastic properties in aortic stenosis before and after valve replacement. Cardiovasc Res 22:759–767. doi:10.1093/cvr/22.11.759

    Article  PubMed  CAS  Google Scholar 

  36. Schulz R, Rose J, Post H, Skyschally A, Heusch G (2000) Less afterload sensitivity in short-term hibernating than in acutely ischemic and stunned myocardium. Am J Physiol Heart Circ Physiol 279:H1106–H1110

    PubMed  CAS  Google Scholar 

  37. Senzaki H, Kass DA (2009) Analysis of isovolumic relaxation in failing hearts by monoexponential time constants overestimates lusitropic change and load dependence: mechanisms and advantages of alternative logistic fit. Circ Heart Fail 3:268–276. doi:10.1161/CIRCHEARTFAILURE.109.865592

    Article  PubMed  Google Scholar 

  38. Sossalla S, Maurer U, Schotola H, Hartmann N, Didie M, Zimmermann WH, Jacobshagen C, Wagner S, Maier LS (2011) Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIdelta(C) can be reversed by inhibition of late Na(+) current. Basic Res Cardiol 106:263–272. doi:10.1007/s00395-010-0136-x

    Article  PubMed  CAS  Google Scholar 

  39. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    PubMed  CAS  Google Scholar 

  40. Westermann D, Riad A, Richter U, Jager S, Savvatis K, Schuchardt M, Bergmann N, Tolle M, Nagorsen D, Gotthardt M, Schultheiss HP, Tschope C (2009) Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Res Cardiol 104:499–509. doi:10.1007/s00395-009-0014-6

    Article  PubMed  CAS  Google Scholar 

  41. Yip G, Wang M, Zhang Y, Fung JW, Ho PY, Sanderson JE (2002) Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart 87:121–125. doi:10.1136/heart.87.2.121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (grant number PIC/IC/82943/2007), through the Cardiovascular R&D Unit (nr. 51/94) and by a grant from the European Commission (FP7-Health-2010; MEDIA-261409).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelino F. Leite-Moreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 15434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leite-Moreira, A.F., Lourenço, A.P., Roncon-Albuquerque, R. et al. Diastolic tolerance to systolic pressures closely reflects systolic performance in patients with coronary heart disease. Basic Res Cardiol 107, 251 (2012). https://doi.org/10.1007/s00395-012-0251-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-012-0251-y

Keywords

Navigation