Skip to main content
Log in

Hemodynamically Driven Stent Strut Design

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stents are deployed to physically reopen stenotic regions of arteries and to restore blood flow. However, inflammation and localized stent thrombosis remain a risk for all current commercial stent designs. Computational fluid dynamics results predict that nonstreamlined stent struts deployed at the arterial surface in contact with flowing blood, regardless of the strut height, promote the creation of proximal and distal flow conditions that are characterized by flow recirculation, low flow (shear) rates, and prolonged particle residence time. Furthermore, low shear rates yield an environment less conducive for endothelialization, while local flow recirculation zones can serve as micro-reaction chambers where procoagulant and pro-inflammatory elements from the blood and vessel wall accumulate. By merging aerodynamic theory with local hemodynamic conditions we propose a streamlined stent strut design that promotes the development of a local flow field free of recirculation zones, which is predicted to inhibit thrombosis and is more conducive for endothelialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alkhamis, T. M., R. L. Beissinger, J. R. Chediak. Red blood cell effect on platelet adhesion and aggregation in low-stress shear flow. Myth or fact? ASAIO Trans. 34:868-873, 1988.

    PubMed  CAS  Google Scholar 

  2. Astrand, P., K. Rodahl, H. A. Dahl, S. B. Stromme. Textbook of Work Physiology: Physiological Bases of Exercise. Champaign: Human Kinetics, 2003.

    Google Scholar 

  3. Auriti, A., C. Cianfrocca, C. Pristipino, S. Greco, M. Galeazzi, V. Guido, M. Santini. Improving feasibility of posterior descending coronary artery flow recording by transthoracic Doppler echocardiography. Eur. J. Echocardiogr. 4:214–220, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Berry, J. L., A. Santamarina, J. E. Moore, S. Roychowdhury, W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, M. C., P. C. Lu, J. S. Chen, N. H. Hwang. Computational hemodynamics of an implanted coronary stent based on three-dimensional cine angiography reconstruction. ASAIO J. 51:313–320, 2005.

    Article  PubMed  Google Scholar 

  6. Chiu J., C. Chen, P. Lee, C. Yang, H. Chuang, S. Chien, S. Usami. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J. Biomech. 36:1883–1895, 2003.

    Article  PubMed  Google Scholar 

  7. Choi, H. W., A. I. Barakat. Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Biorheology. 42:493-50, 2005.

    PubMed  Google Scholar 

  8. Cutnell, J., K. Johnson. Physics, New York: Wiley, 1998.

    Google Scholar 

  9. DeBakey, M. E., G. C. Morris, R. O. Morgen, E. S. Crawford, D. A. Cooley. Lesions of the renal artery. surgical technic and results. Am. J. Surg. 107:84-96, 1964.

    Article  PubMed  CAS  Google Scholar 

  10. Diamond, S. L., S. G. Eskin, L. V. McIntire. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science. 243:1483-1485, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Dibra, A., A. Kastrati, J. Mehilli, J. Pache, R. von Oepen, J. Dirschinger, A. Schömig. Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: a randomized double-blind controlled trial. Catheter Cardiovasc. Interv. 65:374-380, 2005.

    Article  PubMed  Google Scholar 

  12. Finn, A. V., M. Joner, G. Nakazawa, F. Kolodgie, J. Newell, M. C. John, H. K. Gold, R. Virmani. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 115:2435–2441, 2007.

    Article  PubMed  Google Scholar 

  13. Frangos, J. A., S. G. Eskin, L. V. McIntire, C. L. Ives. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 227:1477-1479, 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Fry, D. L. Acute vascular endothelial changes associated with increased blood velocity gradients Circ. Res. 22:165-197, 1968.

    PubMed  CAS  Google Scholar 

  15. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

    Google Scholar 

  16. Garasic, J. M., E. R. Edelman, J. C. Squire, P. Seifert, M. S. Williams, C. Rogers. Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation. 101:812-818, 2000.

    PubMed  CAS  Google Scholar 

  17. Grabowski, E. F., E. A. Jaffe, B. B. Weksler. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. Clin. Med. 105:36–43, 1985.

    PubMed  CAS  Google Scholar 

  18. Hamuro, M., J. C. Palmaz, E. A. Sprague, C. Fuss, J. Luo. Influence of stent edge angle on endothelialization in an in vitro model. J. Vasc. Interv. Radiol. 12:607-611, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. He, Y., N. Duraiswamy, A. O. Frank, J. E. Moore. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J. Biomech. Eng. 127:637–647, 2005.

    Article  PubMed  Google Scholar 

  20. Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schühlen, F. J. Neumann, M. Fleckenstein, C. Pfafferott, M. Seyfarth, A. Schömig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation. 103:2816–2821, 2001.

    PubMed  CAS  Google Scholar 

  21. Ku, D. N. Blood Flow in Arteries. Annu. Rev. Fluid Mech. 29:399-434, 1997

    Article  Google Scholar 

  22. Ku, D. N., D. P. Giddens. Pulsatile flow in a model carotid bifurcation. Arterioscler. Thromb. Vasc. Biol. 3:31-39, 1983.

    CAS  Google Scholar 

  23. Kumar, V., R. S. Cotran, S. L. Robbins. Basic Pathology. Philadelphia: W. B. Saunders Company, 1997.

    Google Scholar 

  24. LaDisa, J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, P. S. Pagel. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972-980, 2003.

    Article  PubMed  Google Scholar 

  25. LaDisa, J. F., D. A. Hettrick, L. E. Olson, I. Guler, E. R. Gross, T. T. Kress, J. R. Kersten, D. C. Warltier, P. S. Pagel. Stent implantation alters coronary artery hemodynamics and wall shear stress during maximal vasodilation. J. Appl. Physiol. 93:1939–1946, 2002.

    PubMed  Google Scholar 

  26. LaDisa, J. F., L. E. Olson, D. A. Hettrick, D. C. Warltier, J. R. Kersten, P. S. Pagel. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening. Biomed. Eng. Online. 4:59, 2005.

    Article  PubMed  Google Scholar 

  27. Marks, D. S., J. A. Vita, J. D. Folts, J. F. Keaney, G. N. Welch, J. Loscalzo, Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J. Clin. Invest. 96:2630–2638, 1995.

    Article  PubMed  CAS  Google Scholar 

  28. Mattsson, E. J. R., T. R. Kohler, S. M. Vergel, A. W. Clowes, Increased blood flow induces regression of intimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 17:2245-2249, 1997.

    PubMed  CAS  Google Scholar 

  29. Nguyen, N. D., A. K. Haque, Effect of hemodynamic factors on atherosclerosis in the abdominal aorta. Atherosclerosis. 84:33-39, 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Noris, M., M. Morigi, R. Donadelli, S. Aiello, M. Foppolo, M. Todeschini, S. Orisio, G. Remuzzi, A. Remuzzi. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ. Res. 76:536-543, 1995.

    PubMed  CAS  Google Scholar 

  31. Pache, J., A. Kastrati, J. Mehilli, H. Schühlen, F. Dotzer, J. Hausleiter, M. Fleckenstein, F. J. Neumann, U. Sattelberger, C. Schmitt, M. Müller, J. Dirschinger, A. Schömig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41:1289-1292, 2003.

    Article  Google Scholar 

  32. Passerini, A. G., D. C. Polacek, C. Shi, N. M. Francesco, E. Manduchi, G. R. Grant, W. F. Pritchard, S. Powell, G. Y. Chang, C. J. Stoeckert, P. F. Davies. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci. U.S.A. 101:2482-2487, 2004.

    Article  PubMed  CAS  Google Scholar 

  33. Reininger, A. J., H. F. G. Heijnen, H. Schumann, H. M. Specht, W. Schramm, Z. M. Ruggeri, Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood. 107:3537-3545, 2006.

    Article  PubMed  CAS  Google Scholar 

  34. Roache, P. J. Verification and Validation in Computational Science and Engineering. Albuquerque: Hermosa Publishers, 1998.

    Google Scholar 

  35. Rogers, C., E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation. 91:2995-3001, 1995.

    PubMed  CAS  Google Scholar 

  36. Rogers, C., D. Y. Tseng, J. C. Squire, E. R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378-383, 1999.

    PubMed  CAS  Google Scholar 

  37. Sanmartín, M., J. Goicolea, C. García, J. García, A. Crespo, J. Rodríguez, J. M. Goicolea. Influence of shear stress on in-stent restenosis: in vivo study using 3D reconstruction and computational fluid dynamics. Rev. Esp. Cardiol. 59:20-27, 2006.

    Article  PubMed  Google Scholar 

  38. Seo, T., L. G. Schachter, A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444-456, 2005.

    Article  PubMed  Google Scholar 

  39. Shankaran, H., P. Alexandridis, S. Neelamegham. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood. 101:2637-2645, 2003.

    Article  PubMed  CAS  Google Scholar 

  40. Simon, C., J. C. Palmaz, E. A. Sprague. Influence of topography on endothelialization of stents: clues for new designs. J. Long Term Eff. Med. Implants. 10:143-151, 2000.

    PubMed  CAS  Google Scholar 

  41. Sprague, E. A., J. Luo, J. C. Palmaz. Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J. Vasc. Interv. Radiol. 8:83-92, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Stamler, J., M. E. Mendelsohn, P. Amarante, D. Smick, N. Andon, P. F. Davies, J. P. Cooke, J. Loscalzo. N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ. Res. 65:789-795, 1989.

    PubMed  CAS  Google Scholar 

  43. Stone, G. W., J. W. Moses, S. G. Ellis, J. Schofer, K. D. Dawkins, M. C. Morice, A. Colombo, E. Schampaert, E. Grube, A. J. Kirtane, D. E. Cutlip, M. Fahy, S. J. Pocock, R. Mehran, M. B. Leon. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N. Engl. J. Med. 356:998-1008, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. Sun, R. J., S. Muller, X. Wang, F. Y. Zhuang, J. F. Stoltz. Regulation of von Willebrand factor of human endothelial cells exposed to laminar flows: an in vitro study. Clin. Hemorheol. Microcirc. 23:1-11, 2000.

    PubMed  CAS  Google Scholar 

  45. Suo, J., D. E. Ferrara, D. Sorescu, R. E. Guldberg, W. R. Taylor, D. P. Giddens. Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler. Thromb. Vasc. Biol. 27:346-351, 2007.

    Article  PubMed  CAS  Google Scholar 

  46. Topol, E. J. Coronary–artery stents—Gauging, Gorging, and Gouging. N. Engl. J. Med. 339:1702–1704, 1998.

    Article  PubMed  CAS  Google Scholar 

  47. von der Leyen, H. E., G. H. Gibbons, R. Morishita, N. P. Lewis, L. Zhang, M. Nakajima, Y. Kaneda, J. P. Cooke, V. J. Dzau. In vivo gene transfer to prevent neointima hyperplasia after vascular injury: effect of overexpression of constitutive nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 92:1137-1141, 1995.

    Article  PubMed  Google Scholar 

  48. Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, P. W. Serruys, C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation. 103:1740-1745, 2001.

    PubMed  CAS  Google Scholar 

  49. Yamamoto, T., Y. Ogasawara, A. Kimura, H. Tanaka, O. Hiramatsu, K. Tsujioka, M. J. Lever, K. H. Parker, C. J. H. Jones, C. G. Caro, F. Kajiya. Blood velocity profiles in the human renal artery by doppler ultrasound and their relationship to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 16:172-177, 1996.

    PubMed  CAS  Google Scholar 

  50. Yutani, C., M. Imakita, H. Ishibashi-Ueda, A. Yamamoto, S. Takaichi. Localization of lipids and cell population in atheromatous lesions in aorta and its main arterial branches in patients with hypercholesterolemia. In: Role of Blood Blow in Atherogenesis, edited by R. M. Nerem, S. Glagov, T. Yamaguchi, Y. Yoshida, C. G. Caro, Tokyo: Springer-Verlag, 1988, pp. 25–31.

    Google Scholar 

  51. Zarins, C. K., D. P. Giddens, B. K. Bharadavaj, V. S. Sottiurai, R. F. Mabon, S. Glagov. Carotid bifurcation atherosclerosis. quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health under NIH grants HL62250, HL096059 and Training Grant T32 HL07954. We thank Drs. Scott L. Diamond, Melissa D. Sánchez, Jennifer E. Clark, Josué Sznitman, and David A. Boger for their constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, J.M., Davies, P.F. Hemodynamically Driven Stent Strut Design. Ann Biomed Eng 37, 1483–1494 (2009). https://doi.org/10.1007/s10439-009-9719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9719-9

Keywords

Navigation