Skip to main content

Advertisement

Log in

Numerical Validation of a New Method to Assess Aortic Pulse Wave Velocity from a Single Recording of a Brachial Artery Waveform with an Occluding Cuff

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recently a new method has been proposed as a tool to measure arterial pulse wave velocity (PWV), a measure of the stiffness of the large arteries and an emerging parameter used as indicator of clinical cardiovascular risk. The method is based on measurement of brachial blood pressure during supra-systolic pressure inflation of a simple brachial cuff [the device is known as the Arteriograph (Tensiomed, Budapest, Hungary)]. This occlusion yields pronounced first and secondary peaks in the pressure waveform, the latter ascribed to a reflection from the aortic bifurcation, and PWV is calculated as the ratio of twice the jugulum-symphysis distance and the time difference between the two peaks. To test the validity of this working principle, we used a numerical model of the arterial tree to simulate pressures and flows in the normal configuration, and in a configuration with an occluded brachial artery. A pronounced secondary peak was indeed found in the brachial pressure signal of the occluded model, but its timing was only related to brachial stiffness and not to aortic stiffness. We also compared PWV’s calculated with three different methods: PWVATG (~Arteriograph principle), PWVcar–fem (~carotid–femoral PWV, the current clinical gold standard method), and PWVtheor (~Bramwell–Hill equation). Both PWVATG (R 2 = 0.94) and PWVcar–fem (R 2 = 0.95) correlated well with PWVtheor, but their numerical values were lower (by 2.17 ± 0.42 and 1.08 ± 0.70 m/s for PWVATG and PWVcar–fem, respectively). In conclusion, our simulations question the working principle of the Arteriograph. Our data indicate that the method picks up wave reflection phenomena confined to the brachial artery, and derived values of PWV rather reflect the stiffness of the brachial arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Baulmann, J., U. Schillings, S. Rickert, S. Uen, R. Dusing, M. Illyes, A. Cziraki, G. Nickering, and T. Mengden. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J. Hypertens. 26:523–528, 2008.

    Article  PubMed  CAS  Google Scholar 

  2. Benyu, J., L. Baoming, K. L. McNeill, and P. J. Chowienczyk. Measurement of pulse wave velocity using pulse wave Doppler ultrasound: comparison with arterial tonometry. Ultrasound Med. Biol. 34:509–512, 2008.

    Article  Google Scholar 

  3. Bjarnegard, N., and T. Lanne. Arterial properties along the upper arm in man—age-related effects and the consequence of anatomical location. J. Appl. Physiol., 2009 [epub ahead of print].

  4. Bonny, A., F. Lacombe, M. Yitemben, B. Discazeaux, J. Donetti, P. Fahri, R. Megbemado, and B. Estampes. The 2007 ESH/ESC guidelines for the management of arterial hypertension. J. Hypertens. 26:825–826, 2008.

    Article  PubMed  CAS  Google Scholar 

  5. Bramwell, J. C., and A. V. Hill. The velocity of the pulse wave in man. Proc. Soc. Exp. Biol. Med. 93:298–306, 1922.

    Google Scholar 

  6. Chiu, Y. C., P. W. Arand, S. G. Shroff, T. Feldman, and J. D. Carroll. Determination of pulse wave velocities with computerized algorithms. Am. Heart J. 121:1460–1470, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Horvath, I., L. Papp, and M. Illyes. Invasive validations of a user independent oscillometric device (Arteriograph) for measuring augmentation index and aortic pulse wave velocity. Artery Res. 1:75–76, 2007.

    Article  Google Scholar 

  8. Illyes, M. A new and fast screening method for measuring complex hemodynamical parameters and arterial stiffness non-invasively with a simple arm cuff. Am. J. Hypertens. 18:15A, 2005.

    Article  Google Scholar 

  9. Laurent, S., J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, H. Struijker-Boudier, and N.-i. European Network. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27:2588–2605, 2006.

    Article  PubMed  Google Scholar 

  10. Lehmann, E. D. Noninvasive measurements of aortic stiffness: methodological considerations. Pathol. Biol. 47:716–730, 1999.

    PubMed  CAS  Google Scholar 

  11. Magometschnigg, D. Blood pressure and arterial stiffness. A comparison of two devices for measuring augmentation index and pulse wave velocity. Wien. Med. Wochenschr. 155:404–410, 2005.

    Article  PubMed  Google Scholar 

  12. Millasseau, S. C., A. D. Stewart, S. J. Patel, S. R. Redwood, and P. J. Chowienczyk. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension 45:222–226, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Oliver, J. J., and D. J. Webb. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler. Thromb. Vasc. Biol. 23:554–566, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Parker, K. H., and C. J. H. Jones. Forward and backward running waves in the arteries—analysis using the method of characteristics. J. Biomech. Eng. Trans. ASME 112:322–326, 1990.

    Article  CAS  Google Scholar 

  15. Reymond, P., F. Merenda, F. Perren, D. Rufenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:H208–H222, 2009.

    Article  PubMed  CAS  Google Scholar 

  16. Rietzschel, E. R., M. L. De Buyzere, S. Bekaert, P. Segers, D. De Bacquer, L. Cooman, P. Van Damme, P. Cassiman, M. Langlois, P. van Oostveldt, P. Verdonck, G. De Backer, T. C. Gillebert, and I. Asklepios. Rationale, design, methods and baseline characteristics of the Asklepios Study. Eur. J. Cardiovasc. Prev. Rehabil. 14:179–191, 2007.

    Article  PubMed  Google Scholar 

  17. Segers, P., J. Kips, B. Trachet, A. Swillens, S. Vermeersch, D. Mahieu, E. Rietzschel, M. De Buyzere, and L. Van Bortel. Limitations and pitfalls of non-invasive measurement of arterial pressure wave reflections and pulse wave velocity. Artery Res. 3:79–88, 2009.

    Article  Google Scholar 

  18. Segers, P., E. Rietzschel, S. Vermeersch, M. De Buyzere, D. De Bacquer, G. De Backer, P. Verdonck, T. Gillebert, L. Bortel, and I. Asklepios. Carotid artery structure and large artery stiffness in 2524 middle-aged men and women (Asklepios study): integrating morphology and mechanics. J. Hypertens. 26:S63, 2008.

    Google Scholar 

  19. Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25:1477–1488, 1992.

    Article  PubMed  CAS  Google Scholar 

  20. Swillens, A., and P. Segers. Assessment of arterial pressure wave reflection: methodological considerations. Artery Res. 2:122–131, 2008.

    Article  Google Scholar 

  21. Van Bortel, L. M., E. J. Balkestein, J. J. van der Heijden-Spek, F. H. Vanmolkot, J. A. Staessen, J. A. Kragten, J. W. Vredeveld, M. E. Safar, H. A. S. Boudier, and A. P. Hoeks. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J. Hypertens. 19:1037–1044, 2001.

    Article  PubMed  Google Scholar 

  22. Vermeersch, S. J., E. R. Rietzschel, M. L. De Buyzere, D. De Bacquer, G. De Backer, L. M. Van Bortel, T. C. Gillebert, P. R. Verdonck, P. Segers, and I. Asklepios. Age and gender related patterns in carotid-femoral PWV and carotid and femoral stiffness in a large healthy, middle-aged population. J. Hypertens. 26:1411–1419, 2008.

    Article  PubMed  CAS  Google Scholar 

  23. Westerhof, N., P. Sipkema, G. C. Vandenbo, and G. Elzinga. Forward and backward waves in arterial system. Cardiovasc. Res. 6:648–656, 1972.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was funded by a PhD grant to B. Trachet of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Trachet.

Additional information

Associate Editor Dr. Erik L. Ritman oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trachet, B., Reymond, P., Kips, J. et al. Numerical Validation of a New Method to Assess Aortic Pulse Wave Velocity from a Single Recording of a Brachial Artery Waveform with an Occluding Cuff. Ann Biomed Eng 38, 876–888 (2010). https://doi.org/10.1007/s10439-010-9945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9945-1

Keywords

Navigation