Skip to main content
Log in

Modeling Stented Coronary Arteries: Where We are, Where to Go

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the last two decades, numerical models have become well-recognized and widely adopted tools to investigate stenting procedures. Due to limited computational resources and modeling capabilities, early numerical studies only involved simplified cases and idealized stented arteries. Nowadays, increased computational power allows for numerical models to meet clinical needs and include more complex cases such as the implantation of multiple stents in bifurcations or curved vessels. Interesting progresses have been made in the numerical modeling of stenting procedures both from a structural and a fluid dynamics points of view. Moreover, in the drug eluting stents era, new insights on drug elution capabilities are becoming essential in the stent development. Lastly, image-based methods able to reconstruct realistic geometries from medical images have been proposed in the recent literature aiming to better describe the peculiar anatomical features of coronary vessels and increase the accuracy of the numerical models. In this light, this review provides a comprehensive analysis of the current state-of-the-art in this research area, discussing the main methodological advances and remarkable results drawn from a number of significant studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Antiga, L., B. Ene-Iordache, L. Caverni, G. P. Cornalba, and A. Remuzzi. Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Comput. Med. Imaging Graph. 26(4):227–235, 2002.

    Article  PubMed  Google Scholar 

  2. Balakrishnan, B., J. F. Dooley, G. Kopia, and E. R. Edelman. Intravascular drug release kinetics dictate arterial drug deposition, retention, and distribution. J. Control. Release. 123(2):100–108, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Balakrishnan, B., J. F. Dooley, G. Kopia, and E. R. Edelman. Thrombus causes fluctuations in arterial drug delivery from intravascular stents. J. Control. Release. 131:173–180, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Balakrishnan, B., A. R. Tzafriri, P. Seifert, A. Groothuis, C. Rogers, and E. R. Edelman. Strut position, blood flow, and drug deposition, implications for single and overlapping drug-eluting stents. Circulation 111:2958–2965, 2005.

    Article  PubMed  Google Scholar 

  5. Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41(5):1053–1061, 2008.

    Article  PubMed  Google Scholar 

  6. Bernardini, A., I. Larrabide, L. Petrini, G. Pennati, E. Flore, M. Kim, and A. F. Frangi. Deployment of self-expandable stents in aneurysmatic cerebral vessels: comparison of different computational approaches for interventional planning. Comput. Methods. Biomech. Biomed. Eng. 15(3):303–311, 2012.

    Article  CAS  Google Scholar 

  7. Borghi, A., E. Foa, R. Balossino, F. Migliavacca, and G. Dubini. Modeling drug elution from stents: effects of reversible binding in the vascular wall and degradable polymeric matrix. Comput. Methods Biomech. Biomed. Engin. 11:367–377, 2008.

    Article  PubMed  CAS  Google Scholar 

  8. Bourantas, C. V., I. C. Kourtis, M. E. Plissiti, D. I. Fotiadis, C. S. Katsouras, M. I. Papafaklis, and L. K. Michalis. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images. Comput. Med. Imaging Graph. 29(8):597–606, 2005.

    Article  PubMed  Google Scholar 

  9. Burzotta, F., M. F. Brancati, C. Trani, I. Porto, A. Tommasino, G. De Maria, G. Niccoli, A. M. Leone, V. Coluccia, G. Schiavoni, and F. Crea. INtimal hyerPlasia evAluated by oCT in de novo COROnary lesions treated by drug-eluting balloon and bare-metal stent (IN-PACT CORO): study protocol for a randomized controlled trial. Trials 13(1):55, 2012.

    Article  PubMed  Google Scholar 

  10. Caiazzo, A., D. Evans, J. L. Falcone, J. Hegewald, E. Lorenz, B. Stahl, D. Wang, J. Bernsdorf, B. Chopard, J. Gunn, R. Hose, M. Krafczyk, P. Lawford, R. Smallwood, D. Walker, and A. Hoekstra. A complex automata approach for in-stent restenosis: two-dimensional multiscale modelling and simulations. J. Comput. Sci. 2(1):9–17, 2011.

    Article  Google Scholar 

  11. Capelli, C., G. Biglino, L. Petrini, F. Migliavacca, D. Cosentino, P. Bonhoeffer, A. M. Taylor, and S. Schievano. Finite element strategies to satisfy clinical and engineering requirements in the field of percutaneous valves. Ann. Biomed. Eng. 1–11, 2012. DOI:10.1007/s10439-012-0617-1.

  12. Capelli, C., F. Gervaso, L. Petrini, G. Dubini, and F. Migliavacca. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31:441–447, 2009.

    Article  PubMed  Google Scholar 

  13. Cárdenes, R., J. L. Díez, I. Larrabide, H. Bogunović, and A. F. Frangi. 3D modeling of coronary artery bifurcations from CTA and conventional coronary angiography. Med. Image. Comput. Comput. Assist. Interv. 14(Pt 3):395–402, 2011.

    PubMed  Google Scholar 

  14. Cecchi, E., C. Giglioli, S. Valente, C. Lazzeri, G. F. Gensini, R. Abbate, and L. Mannini. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 214(2):249–256, 2011.

    Article  PubMed  CAS  Google Scholar 

  15. Chiastra, C., S. Morlacchi, S. Pereira, G. Dubini, and F. Migliavacca. Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur. J. Mech. B Fluids 35:76–84, 2012.

    Article  Google Scholar 

  16. Colombo, A., J. W. Moses, M. C. Morice, J. Ludwig, D. R. Holmes, Jr., V. Spanos, Y. Louvard, B. Desmedt, C. Di Mario, and M. B. Leon. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation 109(10):1244–1249, 2004.

    Article  PubMed  Google Scholar 

  17. Cutrì, E., P. Zunino, S. Morlacchi, C. Chiastra, and F. Migliavacca. Drug delivery patterns for different stenting techniques in coronary bifurcations: a comparative computational study. Biomech. Model. Mechanobiol. Online first article, 2012. DOI:10.1007/s10237-012-0432-5.

  18. D’Angelo, C., P. Zunino, A. Porpora, S. Morlacchi, and F. Migliavacca. Model reduction strategies enable computational analysis of controlled drug release from cardiovascular stents. SIAM J. Appl. Math. 71:2312–2333, 2011.

    Article  CAS  Google Scholar 

  19. Davies, J. E., Z. I. Whinnett, D. P. Francis, C. H. Manisty, J. Aguado-Sierra, K. Willson, R. A. Foale, I. S. Malik, A. D. Hughes, K. H. Parker, and J. Mayer. Evidence of dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 113:1768–1778, 2006.

    Article  PubMed  Google Scholar 

  20. De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41:383–389, 2008.

    Article  PubMed  Google Scholar 

  21. De Santis, G., M. Conti, B. Trachet, T. De Schryver, M. De Beule, J. Degroote, J. Vierendeels, F. Auricchio, P. Segers, P. Verdonck, and B. Verhegghe. Haemodynamic impact of stent-vessel (mal)apposition following carotid artery stenting: mind the gaps! Comput. Methods. Biomech. Biomed. Eng., 2011 [Epub ahead of print].

  22. De Santis, G., M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Patient-specific computational haemodynamics: generation of structured and conformal hexahedral meshes from triangulated surfaces of vascular bifurcations. Comput. Methods. Biomech. Biomed. Eng. 14(9):797–802, 2011.

    Article  Google Scholar 

  23. Deplano, V., C. Bertolotti, and P. Barragan. Three-dimensional numerical simulations of physiological flows in a stented coronary bifurcation. Med. Biol. Eng. Comput. 42(5):650–659, 2004.

    Article  PubMed  CAS  Google Scholar 

  24. Doriot, P. A., P. A. Dorsaz, L. Dorsaz, E. De Benedetti, P. Chatelain, and P. Delafontaine. In vivo measurements of wall shear stress in human coronary arteries. Coron. Artery Dis. 11(6):495–502, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Dvir, D., H. Marom, A. Assali, and R. Kornowski. Bifurcation lesions in the coronary arteries: early experience with a novel 3-dimensional imaging and quantitative analysis before and after stenting. EuroIntervention. 3(1):95–99, 2007.

    PubMed  Google Scholar 

  26. Edelman, E. R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81(7A):4E–6E, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Ellwein, L. M., H. Otake, T. J. Gundert, B. Koo, T. Shinke, Y. Honda, J. Shite, and J. F. LaDisa. Optical coherence tomography for patient-specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery. Cardiov. Eng. Technol. 2(3):212–227, 2011.

    Article  Google Scholar 

  28. Etave, F., G. Finet, M. Boivin, J. C. Boyer, G. Rioufol, and G. Thollet. Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–1075, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Foin, N., R. Torii, P. Mortier, M. De Beule, N. Viceconte, P. H. Chan, J. E. Davies, X. Y. Xu, R. Krams, and C. Di Mario. Kissing balloon or sequential dilation of the side branch and main vessel for provisional stenting of bifurcations: lessons from micro-computed tomography and computational simulations. JACC Cardiovasc. Interv. 5(1):47–56, 2012.

    Article  PubMed  Google Scholar 

  30. Galassi, A. R., S. D. Tomasello, D. Capodanno, D. Seminara, L. Canonico, M. Occhipinti, and C. Tamburino. A novel 3-D reconstruction system for the assessment of bifurcation lesions treated by the mini-crush technique. J. Interv. Cardiol. 23(1):46–53, 2010.

    Article  PubMed  Google Scholar 

  31. Garg, S., and P. W. Serruys. Coronary stents: looking forward. J. Am. Coll. Cardiol. 56(Suppl. 10):S43–S78, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, and F. Migliavacca. Modeling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9:551–561, 2010.

    Article  PubMed  Google Scholar 

  33. Gastaldi, D., V. Sassi, L. Petrini, M. Vedani, S. Trasatti, and F. Migliavacca. Continuum damage model for bioresorbable magnesium alloy devices—application to coronary stents. J. Mech. Behav. Biomed. Mater. 4:352–365, 2011.

    Article  PubMed  CAS  Google Scholar 

  34. Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41:1206–1212, 2008.

    Article  PubMed  Google Scholar 

  35. Gijsen, F. J., F. Migliavacca, S. Schievano, L. Socci, L. Petrini, A. Thury, J. J. Wentzel, A. F. van der Steen, P. W. Serruys, and G. Dubini. Simulation of stent deployment in a realistic human coronary artery. Biomed. Eng. Online. 7:23, 2008.

    Article  PubMed  Google Scholar 

  36. Gonzalo, N., H. M. Garcia-Garcia, E. Regar, P. Barlis, J. J. Wentzel, Y. Onuma, J. Ligthart, and P. W. Serruys. In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovasc. Imaging. 2(4):473–482, 2009.

    Article  PubMed  Google Scholar 

  37. Grabow, N., C. M. Bunger, K. Sternberg, et al. Mechanical properties of a biodegradable balloon-expandable stent from poly(l-lactide) for peripheral vascular application. ASME J. Med. Dev. 1:84–88, 2005.

    Article  Google Scholar 

  38. Grabow, N., M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, and K. P. Schmitz. Mechanical properties of laser cut poly-l-lactide microspecimens: implications for stent design, manufacture, and sterilization. J. Biomech. Eng. 127:25–31, 2005.

    Article  PubMed  Google Scholar 

  39. Grassi, M., G. Pontrelli, L. Teresi, G. Grassi, L. Comel, A. Ferluga, and L. Galasso. Novel design of drug delivery in stented arteries: a numerical comparative study. Math. Biosci. Eng. 6(3):493–508, 2009.

    Article  PubMed  Google Scholar 

  40. Grogan, J. A., B. J. O’Brien, S. B. Leen, and P. E. McHugh. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 7:3523–3533, 2011.

    Article  PubMed  CAS  Google Scholar 

  41. Gundert, T. J., A. L. Marsden, W. Yang, D. S. Marks, and J. F. Ladisa, Jr. Identification of hemodynamically optimal coronary stent designs based on vessel caliber. IEEE Trans. Biomed. Eng. 59(7):1992–2002, 2012.

    Article  PubMed  Google Scholar 

  42. Gundert, T. J., S. C. Shadden, A. R. Williams, B. K. Koo, J. A. Feinstein, and J. F. Ladisa. A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models. Ann. Biomed. Eng. 39(5):1423–1437, 2011.

    Article  PubMed  Google Scholar 

  43. Gunn, J., N. Arnold, K. H. Chan, L. Shepherd, D. C. Cumberland, and D. C. Crossman. Coronary artery stretch versus deep injury in the development of in-stent neointima. Heart 88(4):401–405, 2002.

    Article  PubMed  CAS  Google Scholar 

  44. Hall, G. J., and E. P. Kasper. Comparison of element technologies for modeling stent expansion. J. Biomech. Eng. 128:751–756, 2006.

    Article  PubMed  Google Scholar 

  45. Harewood, F. J., J. Grogan, and P. E. McHugh. A multiscale approach to failure assessment in deployment for cardiovascular stents. J Multisc Model. 2010. doi:10.1142/S1756973710000278.

    Google Scholar 

  46. Henninger, H. B., S. P. Reese, A. E. Anderson, and J. A. Weiss. Validation of computational models in biomechanics. J Eng Med. 224(7):801–812, 2010.

    Article  CAS  Google Scholar 

  47. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  PubMed  CAS  Google Scholar 

  48. Hose, D. R., A. J. Narracott, B. Griffiths, S. Mahmood, J. Gunn, D. Sweeney, and P. V. Lawford. A thermal analogy for modelling drug elution from cardiovascular stents. Comput. Methods Biomech. Biomed. Eng. 7:257–264, 2004.

    Article  CAS  Google Scholar 

  49. Huo, Y., G. Finet, T. Lefevre, Y. Louvard, I. Moussa, and G. S. Kassab. Which diameter and angle rule provides optimal flow patterns in a coronary bifurcation? J. Biomech. 45(7):1273–1279, 2012.

    Article  PubMed  Google Scholar 

  50. Hwang, C. W., D. Wu, and E. R. Edelman. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104(5):600–605, 2001.

    Article  PubMed  CAS  Google Scholar 

  51. Iakovou, I., L. Ge, and A. Colombo. Contemporary stent treatment of coronary bifurcations. J. Am. Coll. Cardiol. 46(8):1446–1455, 2005.

    Article  PubMed  Google Scholar 

  52. Kiousis, D. E., A. R. Wulff, and G. A. Holzapfel. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann. Biomed. Eng. 37:315–330, 2009.

    Article  PubMed  Google Scholar 

  53. Kolachalama, V. B., E. G. Levine, and E. R. Edelman. Luminal flow amplifies stent-based drug deposition in arterial bifurcations. PLoS ONE 4(12):e8105, 2009.

    Article  PubMed  CAS  Google Scholar 

  54. Koskinas, K. C., Y. S. Chatzizisis, A. P. Antoniadis, and G. D. Giannoglou. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol. 59(15):1337–1349, 2012.

    Article  PubMed  Google Scholar 

  55. Krams, R., J. J. Wentzel, J. A. Oomen, R. Vinke, J. C. Schuurbiers, P. J. de Feyter, P. W. Serruys, and C. J. Slager. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17(10):2061–2065, 1997.

    Article  PubMed  CAS  Google Scholar 

  56. Lederlin, M., J. B. Thambo, V. Latrabe, O. Corneloup, H. Cochet, M. Montaudon, and F. Laurent. Coronary imaging techniques with emphasis on CT and MRI. Pediatr. Radiol. 41(12):1516–1525, 2011.

    Article  PubMed  Google Scholar 

  57. Lee, J., and N. P. Smith. The multi-scale modeling of coronary blood flow. Ann. Biomed. Eng., 2012. DOI:10.1007/s10439-012-0583-7.

  58. Lefèvre, T., B. Chevalier, and Y. Louvard. Is there a need for dedicated bifurcation devices? EuroIntervention. 6(Suppl J):J123–J129, 2010.

    Article  PubMed  Google Scholar 

  59. Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Lovich, M. A., and E. R. Edelman. Computational simulations of local vascular heparin deposition and distribution. Am. J. Physiol. Heart Circ. Physiol. 271:H2014–H2024, 1996.

    CAS  Google Scholar 

  61. Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27:1988–2000, 2006.

    Article  PubMed  CAS  Google Scholar 

  62. Martin, D., and F. J. Boyle. Computational structural modelling of coronary stent deployment: a review. Comput. Methods Biomech. Biomed. Eng. 14(4):331–348, 2011.

    Article  Google Scholar 

  63. Migliavacca, F., F. Gervaso, M. Prosi, P. Zunino, S. Minisini, L. Formaggia, and G. Dubini. Expansion and drug elution model of a coronary stent. Comput. Methods Biomech. Biomed. Eng. 10:63–73, 2007.

    Article  CAS  Google Scholar 

  64. Migliavacca, F., L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811, 2002.

    Article  PubMed  Google Scholar 

  65. Migliavacca, F., L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27:13–18, 2005.

    Article  PubMed  Google Scholar 

  66. Mongrain, R., I. Faik, R. L. Leask, J. Rodés-Cabau, E. Larose, and O. F. Bertrand. Effects of diffusion coefficients and struts apposition using numerical simulations for drug eluting coronary stents. J. Biomech. Eng. 129:733–742, 2007.

    Article  PubMed  Google Scholar 

  67. Mongrain, R., R. Leask, J. Brunette, I. Faik, N. Bulman-Feleming, and T. Nguyen. Numerical modeling of coronary drug eluting stents. Stud. Health Technol. Inform. 113:443–458, 2005.

    PubMed  Google Scholar 

  68. Moore, J. E., J. S. Soares, and K. R. Rajagopal. Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiov. Eng. Technol. 1:52–65, 2010.

    Article  Google Scholar 

  69. Moore, J. E., L. H. Timmins, and J. F. Ladisa. Coronary artery bifurcation biomechanics and implications for interventional strategies. Catheter Cardiovasc. Interv. 76(6):836–843, 2010.

    Article  PubMed  Google Scholar 

  70. Morlacchi, S., C. Chiastra, D. Gastaldi, G. Pennati, G. Dubini, and F. Migliavacca. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. J. Biomech. Eng. 133(12):121010, 2011.

    Article  PubMed  Google Scholar 

  71. Morlacchi, S., B. Keller, P. Arcangeli, M. Balzan, F. Migliavacca, G. Dubini, J. Gunn, N. Arnold, A. Narracott, D. Evans, and P. Lawford. Hemodynamics and in-stent restenosis: Micro-CT images, histology, and computer simulations. Ann. Biomed. Eng. 39:2615–2626, 2011.

    Article  PubMed  Google Scholar 

  72. Mortier, P., M. De Beule, D. Van Loo, B. Verhegghe, and P. Verdonck. Finite element analysis of side branch access during bifurcation stenting. Med. Eng. Phys. 31:434–440, 2009.

    Article  PubMed  Google Scholar 

  73. Mortier, P., G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, P. Verdonck, and B. Verhegghe. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38(1):88–99, 2010.

    Article  PubMed  Google Scholar 

  74. Mortier, P., D. Van Loo, M. De Beule, P. Segers, Y. Taeymans, P. Verdonck, and B. Verhegghe. Comparison of drug-eluting stent cell size using micro-CT: important data for bifurcation stent selection. EuroIntervention. 4(3):391–396, 2008.

    Article  PubMed  Google Scholar 

  75. Murphy, J., and F. J. Boyle. Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review. Comput. Biol. Med. 40:408–418, 2010.

    Article  PubMed  Google Scholar 

  76. Murphy, J., and F. J. Boyle. A numerical methodology to fully elucidate the altered wall shear stress in a stented coronary artery. Cardiov. Eng. Technol. 1(4):256–268, 2010.

    Article  Google Scholar 

  77. Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl Acad. Sci. USA 12(3):207–214, 1926.

    Article  PubMed  CAS  Google Scholar 

  78. Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, F. D. Kolodgie, and R. Virmani. Incidence and predictors of drug-eluting stent fracture in human coronary artery a pathologic analysis. J. Am. Coll. Cardiol. 54(21):1924–1931, 2009.

    Article  PubMed  Google Scholar 

  79. O’Connell, B. M., T. M. McGloughlin, and M. T. Walsh. Factors that affect mass transport from drug eluting stents into the artery wall. Biomed Eng Online. 9:15, 2010.

    Article  PubMed  Google Scholar 

  80. O’Connell, B. M., and M. T. Walsh. Demonstrating the influence of compression on artery wall mass transport. Ann. Biomed. Eng. 38(4):1354–1366, 2010.

    Article  PubMed  Google Scholar 

  81. Ong, A. T., J. Aoki, E. P. McFadden, and P. W. Serruys. Classification and current treatment options of in-stent restenosis. Present status and future perspectives. Herz. 29(2):187–194, 2004.

    Article  PubMed  Google Scholar 

  82. Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model. Mechanobiol. 11:61–82, 2012.

    Article  PubMed  Google Scholar 

  83. Papayannis, A. C., and E. S. Brilakis. Stent fracture: broken stents–broken hearts. Catheter Cardiovasc Interv. 78(7):1106–1107, 2011.

    Article  PubMed  Google Scholar 

  84. Pericevic, I., C. Lally, D. Toner, and D. J. Kelly. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31(4):428–433, 2009.

    Article  PubMed  Google Scholar 

  85. Petrini, L., F. Migliavacca, F. Auricchio, and G. Dubini. Numerical investigation of the intravascular coronary stent flexibility. J. Biomech. 37(4):495–501, 2004.

    Article  PubMed  Google Scholar 

  86. Pfisterer, M. E. Late stent thrombosis after drug-eluting stent implantation for acute myocardial infarction: a new red flag is raised. Circulation 118(11):1117–1119, 2008.

    Article  PubMed  Google Scholar 

  87. Pontrelli, G., and F. de Monte. A multi-layer porous wall model for coronary drug-eluting stents. Int. J. Heat Mass Transf. 53:3629–3637, 2010.

    Article  CAS  Google Scholar 

  88. Räber, L., J. H. Heo, M. D. Radu, H. M. Garcia–Garcia, G. G. Stefanini, A. Moschovitis, J. Dijkstra, H. Kelbaek, S. Windecker, and P. W. Serruys. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques. EuroIntervention 8(1):98–108, 2012.

    Article  PubMed  Google Scholar 

  89. Schievano, S., A. M. Taylor, C. Capelli, P. Lurz, J. Nordmeyer, F. Migliavacca, and P. Bonhoeffer. Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J. Biomech. 43:687–693, 2010.

    Article  PubMed  Google Scholar 

  90. Schmitt, J., D. Kolstad, and C. Petersen. Intravascular optical coherence tomography opens a window onto coronary artery disease. Opt. Photonics News 15:20–25, 2004.

    Google Scholar 

  91. Schwer, L. E. Guide for Verification and Validation in Computational Solid Mechanics. New York: American Society of Mechanical Engineers, 2006.

    Google Scholar 

  92. Sharma, S. K., J. Sweeny, and A. S. Kini. Coronary bifurcation lesions: a current update. Cardiol. Clin. 28(1):55–70, 2010.

    Article  PubMed  Google Scholar 

  93. Slager, C. J., J. J. Wentzel, J. C. Schuurbiers, J. A. Oomen, J. Kloet, R. Krams, C. von Birgelen, W. J. van der Giessen, P. W. Serruys, and P. J. de Feyter. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102(5):511–516, 2000.

    Article  PubMed  CAS  Google Scholar 

  94. Soares, J. S., J. E. Moore, and K. R. Rajagopal. Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J. 54(3):295–301, 2008.

    Article  PubMed  CAS  Google Scholar 

  95. Soares, J. S., K. R. Rajagopal, and J. E. Moore. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomech. Model. Mechanibiol. 9:177–186, 2010.

    Article  Google Scholar 

  96. Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30:483–497, 2002.

    Article  PubMed  Google Scholar 

  97. Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012.

    Article  CAS  Google Scholar 

  98. Tahir, H., A. G. Hoekstra, E. Lorenz, P. V. Lawford, D. Rodney Hose, J. Gunn, and D. J. W. Evans. Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design. Interface Focus 1(3):365–373, 2011.

    Article  PubMed  Google Scholar 

  99. Tan, L. B., D. C. Webb, K. Kormi, and S. T. S. Al-Hassani. A method for investigating the mechanical properties of intracoronary stents using finite element numerical simulation. Int. J. Cardiol. 78:51–67, 2001.

    Article  PubMed  CAS  Google Scholar 

  100. Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California. Ann. Biomed. Eng. 38(3):1188–1203, 2010.

    Article  PubMed  Google Scholar 

  101. Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91(6):955–967, 2011.

    Article  PubMed  Google Scholar 

  102. Tu, S., N. R. Holm, G. Koning, Z. Huang, and J. H. Reiber. Fusion of 3D QCA and IVUS/OCT. Int. J. Cardiovasc. Imaging 27(2):197–207, 2011.

    Article  PubMed  Google Scholar 

  103. Vairo, G., M. Cioffi, R. Cottone, G. Dubini, and F. Migliavacca. Drug release from coronary eluting stents: a multidomain approach. J. Biomech. 43:1580–1589, 2010.

    Article  PubMed  Google Scholar 

  104. van der Giessen, A. G., H. C. Groen, P. A. Doriot, P. J. de Feyter, A. F. van der Steen, F. N. van de Vosse, J. J. Wentzel, and F. J. Gijsen. The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees. J. Biomech. 44(6):1089–1095, 2011.

    Article  PubMed  Google Scholar 

  105. van der Giessen, A. G., M. Schaap, F. J. Gijsen, H. C. Groen, T. van Walsum, N. R. Mollet, J. Dijkstra, F. N. van de Vosse, W. J. Niessen, P. J. de Feyter, A. F. van der Steen, and J. J. Wentzel. 3D fusion of intravascular ultrasound and coronary computed tomography for in vivo wall shear stress analysis: a feasibility study. Int. J. Cardiovasc. Imaging 26(7):781–796, 2010.

    Article  PubMed  Google Scholar 

  106. van Soest, G., T. Goderie, E. Regar, S. Koljenović, G. L. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. van der Steen. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J. Biomed. Opt. 15(1):011105, 2010.

    Article  PubMed  Google Scholar 

  107. Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation. 103(13):1740–1745, 2001.

    Article  PubMed  CAS  Google Scholar 

  108. Williams, A. R., B. K. Koo, T. J. Gundert, P. J. Fitzgerald, and J. F. LaDisa. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J. Appl. Physiol. 109(2):532–540, 2010.

    Article  PubMed  Google Scholar 

  109. Wu, W., D. Gastaldi, K. Yang, L. L. Tan, L. Petrini, and F. Migliavacca. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Mater. Sci. Eng. B. 176:1733–1740, 2011.

    Article  CAS  Google Scholar 

  110. Wu, W., L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, B. Previtali, and F. Migliavacca. Finite element shape optimization for biodegradable magnesium alloy stents. Ann. Biomed. Eng. 38:2829–2840, 2010.

    Article  PubMed  CAS  Google Scholar 

  111. Yazdani, S. K., M. Nakano, F. Otsuka, F. D. Kolodgie, and R. Virmani. Atheroma and coronary bifurcations: before and after stenting. EuroIntervention. 6(Suppl. J):J24–J30, 2010.

    Article  PubMed  Google Scholar 

  112. Zahedmanesh, H., D. J. Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery—determination of the optimum modelling strategy. J. Biomech. 43:2126–2132, 2010.

    Article  PubMed  Google Scholar 

  113. Zhao S., S. Gu, and S. Froemming. Finite element analysis of the implantation of a self-expanding stent: impact of lesion calcification. J. Med. Devices 6:021001-1, 2012.

    Google Scholar 

  114. Zunino, P. Multidimensional pharmacokinetic models applied to the design of drug-eluting stents. Cardiovasc. Eng. 4:181–191, 2004.

    Google Scholar 

  115. Zunino, P., C. D’Angelo, L. Petrini, C. Vergara, C. Capelli, and F. Migliavacca. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput. Methods Appl. Mech. Eng. 198:3633–3644, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are supported by the project “RT3S—Real Time Simulation for Safer vascular Stenting” funded by the European Commission under the 7th Framework Programme, GA FP7-2009-ICT-4-248801 and by the project “Development of hybrid magnesium degradable stents with polymeric coating for medical application” funded by the Fondazione Cassa di Risparmio di Trento e Rovereto.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Migliavacca.

Additional information

Associate Editor Ender A Finol oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morlacchi, S., Migliavacca, F. Modeling Stented Coronary Arteries: Where We are, Where to Go. Ann Biomed Eng 41, 1428–1444 (2013). https://doi.org/10.1007/s10439-012-0681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0681-6

Keywords

Navigation