Skip to main content

Advertisement

Log in

Microvascular obstruction in patients with non-ST-elevation myocardial infarction: a contrast-enhanced cardiac magnetic resonance study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of the study was to assess the frequency and predictive factors of microvascular obstruction (MVO) in patients with non-ST-segment elevation myocardial infarction (NSTEMI). This study included 190 consecutive patients with NSTEMI who underwent percutaneous coronary intervention (PCI) within 24 h after admission and cardiac magnetic resonance (CMR) imaging, 4.1 days after angiography. MVO was defined using the CMR criteria. MVO was detected 26 of 190 patients (13.8 %). Patients with MVO had higher peak high-sensitivity troponin T, creatine-kinase and creatine kinase-myocardial band levels and higher proportions of those with baseline thrombolysis in myocardial infarction (TIMI) flow grade 0–1, absence of collateral circulation, post-PCI TIMI flow grade <3, myocardial blush grade <3 and angiographic no-reflow than patients without MVO. Patients with MVO had larger initial area at risk [median (25th–75th percentiles), 23.9 % (17.4–33.9 %) vs. 16.1 % (7.8–27.7 %), P = 0.018] and infarct size [11.4 % (6.6–19.2 %) vs. 1.4 % (0–4.7 %) of the left ventricle, P < 0.001] than patients without MVO. In multivariable analysis, the culprit lesion localization in the circumflex coronary artery [adjusted odds ratio (OR) 13.71, 95 % confidence interval 2.91–64.58, P < 0.001] and the infarct size [adjusted OR 3.37 (1.80–6.29), P < 0.001, for each 5 % of the left ventricle] were independently associated with the increased risk for MVO. In patients with NSTEMI undergoing early PCI, the MVO defined by CMR imaging was present in 13.8 % of the patients. The localization of culprit lesion in the circumflex coronary artery and larger infarct size were independently associated with the increased risk for MVO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Avezum A, Makdisse M, Spencer F, Gore JM, Fox KA, Montalescot G et al (2005) Impact of age on management and outcome of acute coronary syndrome: observations from the Global Registry of Acute Coronary Events (GRACE). Am Heart J 149:67–73

    Article  PubMed  Google Scholar 

  2. Armstrong PW, Fu Y, Chang WC, Topol EJ, Granger CB, Betriu A et al (1998) Acute coronary syndromes in the GUSTO-IIb trial: prognostic insights and impact of recurrent ischemia: the GUSTO-IIb investigators. Circulation 98:1860–1868

    Article  CAS  PubMed  Google Scholar 

  3. Ndrepepa G, Mehilli J, Schulz S, Iijima R, Keta D, Byrne RA et al (2009) Patterns of presentation and outcomes of patients with acute coronary syndromes. Cardiology 113:198–206

    Article  PubMed  Google Scholar 

  4. Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, Dalen J et al (1987) Thrombolysis in myocardial infarction (TIMI) trial, phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 76:142–154

    Article  CAS  PubMed  Google Scholar 

  5. Investigators G (2001) Rationale and design of the GRACE (Global Registry of Acute Coronary Events) project: a multinational registry of patients hospitalized with acute coronary syndromes. Am Heart J 141:190–199

    Article  Google Scholar 

  6. Boersma E, Pieper KS, Steyerberg EW, Wilcox RG, Chang WC, Lee KL et al (2000) Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation. Results from an international trial of 9461 patients. The PURSUIT investigators. Circulation 101:2557–2567

    Article  CAS  PubMed  Google Scholar 

  7. Ndrepepa G, Alger P, Fusaro M, Kufner S, Seyfarth M, Keta D et al (2011) Impact of perfusion restoration at epicardial and tissue levels on markers of myocardial necrosis and clinical outcome of patients with acute myocardial infarction. EuroIntervention 7:128–135

    Article  PubMed  Google Scholar 

  8. GUSTO Angiographic Investigators (1993) The effects of tissue plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular function, and survival after acute myocardial infarction. N Engl J Med 329:1615–1622

    Article  Google Scholar 

  9. van ‘t Hof AW, Liem A, Suryapranata H, Hoorntje JC, de Boer MJ, Zijlstra F, Zwolle Myocardial Infarction Study Group (1998) Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Circulation 97:2302–2306

    Article  Google Scholar 

  10. Ndrepepa G, Tiroch K, Fusaro M, Keta D, Seyfarth M, Byrne RA et al (2010) 5-Year prognostic value of no-reflow phenomenon after percutaneous coronary intervention in patients with acute myocardial infarction. J Am Coll Cardiol 55:2383–2389

    Article  PubMed  Google Scholar 

  11. Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M et al (1996) Clinical implications of the ‘no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93:223–228

    Article  CAS  PubMed  Google Scholar 

  12. Morishima I, Sone T, Okumura K, Tsuboi H, Kondo J, Mukawa H et al (2000) Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary angioplasty for first acute myocardial infarction. J Am Coll Cardiol 36:1202–1209

    Article  CAS  PubMed  Google Scholar 

  13. Bolognese L, Carrabba N, Parodi G, Santoro GM, Buonamici P, Cerisano G et al (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109:1121–1126

    Article  PubMed  Google Scholar 

  14. Bogaert J, Kalantzi M, Rademakers FE, Dymarkowski S, Janssens S (2007) Determinants and impact of microvascular obstruction in successfully reperfused ST-segment elevation myocardial infarction. Assessment by magnetic resonance imaging. Eur Radiol 17:2572–2580

    Article  PubMed  Google Scholar 

  15. Husser O, Bodi V, Sanchis J, Nunez J, Lopez-Lereu MP, Monmeneu JV et al (2013) Predictors of cardiovascular magnetic resonance-derived microvascular obstruction on patient admission in STEMI. Int J Cardiol 166:77–84

    Article  PubMed  Google Scholar 

  16. Mewton N, Bonnefoy E, Revel D, Ovize M, Kirkorian G, Croisille P (2009) Presence and extent of cardiac magnetic resonance microvascular obstruction in reperfused non-ST-elevated myocardial infarction and correlation with infarct size and myocardial enzyme release. Cardiology 113:50–58

    Article  CAS  PubMed  Google Scholar 

  17. Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU (2004) Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 44:2173–2181

    Article  PubMed  Google Scholar 

  18. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP et al (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97:765–772

    Article  CAS  PubMed  Google Scholar 

  19. Thiele H, Kappl MJ, Conradi S, Niebauer J, Hambrecht R, Schuler G (2006) Reproducibility of chronic and acute infarct size measurement by delayed enhancement-magnetic resonance imaging. J Am Coll Cardiol 47:1641–1645

    Article  PubMed  Google Scholar 

  20. Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R (2008) The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 51:1581–1587

    Article  PubMed  Google Scholar 

  21. Bondarenko O, Beek AM, Hofman MB, Kuhl HP, Twisk JW, van Dockum WG et al (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7:481–485

    Article  PubMed  Google Scholar 

  22. Hadamitzky M, Langhans B, Hausleiter J, Sonne C, Kastrati A, Martinoff S et al (2013) The assessment of area at risk and myocardial salvage after coronary revascularization in acute myocardial infarction: comparison between CMR and SPECT. JACC Cardiovasc Imaging 6:358–369

    Article  PubMed  Google Scholar 

  23. TIMI Study Group (1985) The thrombolysis in myocardial infarction (TIMI) trial. Phase I findings. N Engl J Med 312:932–936

    Article  Google Scholar 

  24. Rentrop KP, Cohen M, Blanke H, Phillips RA (1985) Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 5:587–592

    Article  CAS  PubMed  Google Scholar 

  25. Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ et al (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93:879–888

    Article  CAS  PubMed  Google Scholar 

  26. Kerensky RA, Wade M, Deedwania P, Boden WE, Pepine CJ (2002) Veterans Affairs Non QWISi-HTI. Revisiting the culprit lesion in non-Q-wave myocardial infarction. Results from the VANQWISH trial angiographic core laboratory. J Am Coll Cardiol 39:1456–1463

    Article  PubMed  Google Scholar 

  27. Sianos G, Papafaklis MI, Serruys PW (2010) Angiographic thrombus burden classification in patients with ST-segment elevation myocardial infarction treated with percutaneous coronary intervention. J Invasive Cardiol 22:6B–14B

    PubMed  Google Scholar 

  28. Giannitsis E, Steen H, Kurz K, Ivandic B, Simon AC, Futterer S et al (2008) Cardiac magnetic resonance imaging study for quantification of infarct size comparing directly serial versus single time-point measurements of cardiac troponin T. J Am Coll Cardiol 51:307–314

    Article  CAS  PubMed  Google Scholar 

  29. Hombach V, Grebe O, Merkle N, Waldenmaier S, Hoher M, Kochs M et al (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 26:549–557

    Article  PubMed  Google Scholar 

  30. Younger JF, Plein S, Barth J, Ridgway JP, Ball SG, Greenwood JP (2007) Troponin-I concentration 72 h after myocardial infarction correlates with infarct size and presence of microvascular obstruction. Heart 93:1547–1551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hombach V, Merkle N, Kestler HA, Torzewski J, Kochs M, Marx N et al (2008) Characterization of patients with acute chest pain using cardiac magnetic resonance imaging. Clin Res Cardiol 97:760–767

    Article  PubMed  Google Scholar 

  32. Van Assche L, Bekkers S, Senthilkumar A, parker MA, Kim AW, Kim RJ (2011) The prevalence of microvascular obstruction in acute myocardial infarction: importance of ST elevation, infarct size, transmurality and infarct age. J Cardiovasc Magn Reson 13(Suppl 1):P147

    Article  PubMed Central  Google Scholar 

  33. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Piana RN, Paik GY, Moscucci M, Cohen DJ, Gibson CM, Kugelmass AD et al (1994) Incidence and treatment of ‘no-reflow’ after percutaneous coronary intervention. Circulation 89:2514–2518

    Article  CAS  PubMed  Google Scholar 

  35. Erbel R, Heusch G (2000) Coronary microembolization. J Am Coll Cardiol 36:22–24

    Article  CAS  PubMed  Google Scholar 

  36. Henriques JP, Zijlstra F, Van‘t Hof AW, de Boer MJ, Dambrink JH, Gosselink M et al (2003) Angiographic assessment of reperfusion in acute myocardial infarction by myocardial blush grade. Circulation 107:2115–2119

    Article  PubMed  Google Scholar 

  37. Iwakura K, Ito H, Kawano S, Shintani Y, Yamamoto K, Kato A et al (2001) Predictive factors for development of the no-reflow phenomenon in patients with reperfused anterior wall acute myocardial infarction. J Am Coll Cardiol 38:472–477

    Article  CAS  PubMed  Google Scholar 

  38. Lepper W, Hoffmann R, Kamp O, Franke A, de Cock CC, Kuhl HP et al (2000) Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction. Circulation 101:2368–2374

    Article  CAS  PubMed  Google Scholar 

  39. Schroder R, Dissmann R, Bruggemann T, Wegscheider K, Linderer T, Tebbe U et al (1994) Extent of early ST segment elevation resolution: a simple but strong predictor of outcome in patients with acute myocardial infarction. J Am Coll Cardiol 24:384–391

    Article  CAS  PubMed  Google Scholar 

  40. Sorajja P, Gersh BJ, Costantini C, McLaughlin MG, Zimetbaum P, Cox DA et al (2005) Combined prognostic utility of ST-segment recovery and myocardial blush after primary percutaneous coronary intervention in acute myocardial infarction. Eur Heart J 26:667–674

    Article  PubMed  Google Scholar 

  41. Baks T, van Geuns RJ, Biagini E, Wielopolski P, Mollet NR, Cademartiri F et al (2005) Recovery of left ventricular function after primary angioplasty for acute myocardial infarction. Eur Heart J 26:1070–1077

    Article  PubMed  Google Scholar 

  42. Nijveldt R, Beek AM, Hirsch A, Stoel MG, Hofman MB, Umans VA et al (2008) Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol 52:181–189

    Article  PubMed  Google Scholar 

  43. Porto I, Burzotta F, Brancati M, Trani C, Lombardo A, Romagnoli E et al (2007) Relation of myocardial blush grade to microvascular perfusion and myocardial infarct size after primary or rescue percutaneous coronary intervention. Am J Cardiol 99:1671–1673

    Article  PubMed  Google Scholar 

  44. Bodi V, Sanchis J, Lopez-Lereu MP, Nunez J, Sanz R, Palau P et al (2006) Microvascular perfusion 1 week and 6 months after myocardial infarction by first-pass perfusion cardiovascular magnetic resonance imaging. Heart 92:1801–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mather AN, Lockie T, Nagel E, Marber M, Perera D, Redwood S et al (2009) Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J Cardiovasc Magn Reson 11:33

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wong DT, Leung MC, Richardson JD, Puri R, Bertaso AG, Williams K et al (2012) Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements. Int J Cardiovasc Imaging 28:1971–1981

    Article  PubMed  Google Scholar 

  47. Bekkers SC, Backes WH, Kim RJ, Snoep G, Gorgels AP, Passos VL et al (2009) Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging. Eur Radiol 19:2904–2912

    Article  PubMed Central  PubMed  Google Scholar 

  48. Nijveldt R, Hofman MB, Hirsch A, Beek AM, Umans VA, Algra PR et al (2009) Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study. Radiology 250:363–370

    Article  PubMed  Google Scholar 

  49. Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI: potential mechanisms. Circulation 92:1117–1125

    Article  CAS  PubMed  Google Scholar 

  50. Xu J, Song YB, Hahn JY, Chang SA, Lee SC, Choe YH et al (2012) Comparison of magnetic resonance imaging findings in non-ST-segment elevation versus ST-segment elevation myocardial infarction patients undergoing early invasive intervention. Int J Cardiovasc Imaging 28:1487–1497

    Article  PubMed  Google Scholar 

  51. Tzivoni D, Koukoui D, Guetta V, Novack L, Cowing G, Investigators CS (2008) Comparison of troponin T to creatine kinase and to radionuclide cardiac imaging infarct size in patients with ST-elevation myocardial infarction undergoing primary angioplasty. Am J Cardiol 101:753–757

    Article  CAS  PubMed  Google Scholar 

  52. Langhans B, Hendrich E, Schömig A, Martinoff S, Hadamitzky H (2013) Reproducibility of area at risk assessment in acute myocardial infarction by T1- and T2-mapping sequences in cardiac magnetic resonance imaging in comparison to Tc99 m-Sestamibi SPECT. J Cardiovasc Magn Reson 15:P240

    Google Scholar 

  53. Chia S, Senatore F, Raffel OC, Lee H, Wackers FJ, Jang IK (2008) Utility of cardiac biomarkers in predicting infarct size, left ventricular function, and clinical outcome after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 1:415–423

    Article  PubMed  Google Scholar 

  54. Hallen J, Buser P, Schwitter J, Petzelbauer P, Geudelin B, Fagerland MW et al (2009) Relation of cardiac troponin I measurements at 24 and 48 hours to magnetic resonance-determined infarct size in patients with ST-elevation myocardial infarction. Am J Cardiol 104:1472–1477

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Kastrati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerra, E., Hadamitzky, M., Ndrepepa, G. et al. Microvascular obstruction in patients with non-ST-elevation myocardial infarction: a contrast-enhanced cardiac magnetic resonance study. Int J Cardiovasc Imaging 30, 1087–1095 (2014). https://doi.org/10.1007/s10554-014-0430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0430-z

Keywords

Navigation