Skip to main content

Advertisement

Log in

Th17 Cells Facilitate the Humoral Immune Response in Patients with Acute Viral Myocarditis

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

Recently, the Th17 cell, a newly determined CD4+Th subset, was reported to participate in the inflammation of myocarditis combined with Th1 cells, and this study aimed to explore whether it was involved in the Th2 cell-mediated humoral immunity in viral myocarditis.

Methods

A total of 34 patients, including 16 acute viral myocarditis (AVMC) and 18 dilated cardiomyopathy (DCM) having a history of AVMC, were enrolled for this study besides 18 healthy volunteers.

Results

The frequencies of Th17 and Th1 cells, especially Th17 cells in AVMC patients, while those of Th1 and Th2 cells, especially Th2 cells in DCM group, were all increased significantly compared with those in healthy volunteers (P < 0.01), with no changes of Th2 cells in AVMC and Th17 cells in DCM groups. The similar results were also observed in Th cell cytokines (IL-17, INF-γ, and IL-4) and key transcript factors (RORγt, T-bet, and GATA-3). Meanwhile, antiheart antibodies (AHA) of IgG type were found in 15 (93.8%) patients with AVMC and ten (55.6%) cases with DCM, accompanied by the higher expression of IL-17R on B cells and the frequencies of B cells than those in healthy controls (P < 0.01 in AVMC and P < 0.05 in DCM, respectively) who had no AHA. Furthermore, both of the B cell activities in AVMC and DCM groups were elevated and positively correlated to serum IL-17 (R = 0.66, P < 0.01) and IL-4 (R = 0.47, P < 0.05) respectively, with no correlation to INF-γ.

Conclusions

It was Th17 cells but not Th2 cells that helped the B cells to produce AHA in AVMC and not until at the late phase of viral myocarditis could Th2 cells play the important role in mediating humoral response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rose NR. Autoimmunity in coxackievirus infection. Curr Top Microbiol Immunol. 2008;323:293–314.

    Article  CAS  PubMed  Google Scholar 

  2. Rose NR, Hill SL. The pathogenesis of postinfectious myocarditis. Clin Immunol Immunopathol. 1996;80:S92–9.

    Article  CAS  PubMed  Google Scholar 

  3. Mena I, Perry CM, Harkins S, Rodriguez F, Gebhard J, Whitton JL. The role of B lymphocytes in coxsachievirus B3 infection. Am J Pathol. 1999;155:1205–15.

    CAS  PubMed  Google Scholar 

  4. Schwimmbeck PL, Bigalke B, Schulze K, Pauschinger M, Kuhl U, Schultheiss HP. The humoral immune responses in viral disease: characterization and pathophysiological significance of antibodies. Med Microbiol Immunol. 2004;193:2–3.

    Google Scholar 

  5. Christian K. Th17 cells: a third subset of CD4+ T effector cells involved in organ-specific autoimmunity. Nephrol Dial Transplant. 2008;23:816–9.

    Google Scholar 

  6. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  CAS  PubMed  Google Scholar 

  7. Atayar C, Poppema S, Blokzijl T, Harms G, Boot M, van den Berg A. Expression of the T-cell transcription factors, GATA-3 and T-bet, in the neoplastic cells of Hodgkin Lymphomas. Am J Pathol. 2005;166:127–30.

    CAS  PubMed  Google Scholar 

  8. Hwang SY, Kim HY. Expression of IL-1 7 homologs and their receptors in the synovial cells of rheumatoid arthritis patients. Mol Cell. 2004;19:180–4.

    Google Scholar 

  9. Aranami T, Yamaura T. Th17 cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int. 2008;57:115–20.

    Article  CAS  PubMed  Google Scholar 

  10. Garrett-Sinha LA, John S, Gaffen SL. IL-17 and the Th17 lineage in systemic lupus erythematosus. Curr Opin Rheumatal. 2008;20:519–25.

    Article  CAS  Google Scholar 

  11. Daniels MD, Hyland KV, Wang K, Engman DM. Recombinant cardiac myosin fragment induces experimental autoimmune myocarditis via activation of Th1 and Th17 immunity. Autoimmunity. 2008;41:490–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chang H, Hanawa H, Yoshida T, Hayashi M, Liu H, Ding L, et al. Alteration of IL-17 related protein expressions in experimental autoimmune myocarditis and inhibition of IL-17 by IL-10-Ig fusion gene transfer. Circ J. 2008;72:813–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hsu HC, Yang PA, Wang J, Wu Q, Myers R, Chen J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center developement in autoimmune BXD2 mice. Nat Immunol. 2008;9:166–75.

    Article  CAS  PubMed  Google Scholar 

  14. Doreau A, Belot A, Bastid J, Benjamin R, Trescol-Biemont MC, Ranchin B, et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol. 2009;10:778–87.

    Article  CAS  PubMed  Google Scholar 

  15. Task Force on Myocarditis and Cardiomyopathy of Chinese Journal of Cardiology Editor Committee: Reference standards for diagnosis of acute viral myocardits in adults. Chin J Cardiology. 1999;27:405–7.

    Google Scholar 

  16. Wynne J, Braunwald E. The cardiomyopathies and myocarditides. In: Braunwald E, Zipes DP, Libby P, editors. Heart disease. 6th ed. Philadelphia: Saunders; 2001. p. 1783–93.

    Google Scholar 

  17. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O'Connell J, et al. Report of the 1995 World Health Organization/ International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.

    CAS  PubMed  Google Scholar 

  18. Cheng X, Yu X, Ding YJ, Fu QQ, Xie JJ, Tang TT, et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol. 2008;127:89–97.

    CAS  PubMed  Google Scholar 

  19. Liao YH, Yuan J, Wang ZH, Cheng X, Zhang JH, Tian Y, et al. Infectious tolerance to ADP/ATP carrier peptides induced by anti-L3T4 monoclonal antibody in dilated cardiomyopathy mice. J Clin Immunol. 2005;25:376–84.

    Article  CAS  PubMed  Google Scholar 

  20. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  21. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89:587–96.

    Article  CAS  PubMed  Google Scholar 

  23. Caforio AL, Tona F, Bottaro S, Vinci A, Dequal G, Daliento L, et al. Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity. 2008;41:35–45.

    Article  CAS  PubMed  Google Scholar 

  24. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–50.

    Article  CAS  PubMed  Google Scholar 

  25. Eriksson U, Kurrer MO, Sebald W, Brombacher F, Kopf M. Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-gamma. J Immunol. 2001;167:5464–9.

    CAS  PubMed  Google Scholar 

  26. Kehoe KE, Brown MA, Imani F. Double-stranded RNA regulates IL-4 expression. J Immunol. 2001;167:2496–501.

    CAS  PubMed  Google Scholar 

  27. Rangachari M, Mauermann N, Marty RR, Dirnhofer S, Kurrer MO, Komnenovic V, et al. T-bet negatively regulates autoimmune myocarditis by suppressing local production of interleukin. J Exp Med. 2006;203:2009–19.

    Article  CAS  PubMed  Google Scholar 

  28. Fairweather D, Frisancho-Kiss S, Rose NR. Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Rev Med Virol. 2005;15:17–27.

    Article  CAS  PubMed  Google Scholar 

  29. Schwimmbeck PL, Bland NK, Schulthesis HP, Strauer BE. The possible value of synthetic peptides in the diagnosis and therapy of myocarditis and dilated cardiomyopathy. Eur Heart J. 1991;12(Suppl D):76–80.

    PubMed  Google Scholar 

  30. Liu HR, Zhao RR, Zhi JM, Wu BW, Fu ML. Screening of serum autoantibodies to cardiac beta1-adrenoceptors and M2-muscarinic acetylcholine receptors in 408 healthy subjects of varying ages. Autoimmunity. 1999;29:43–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The work described in this article was supported by grants from National Basic Research Program of China (973 Program): 2007CB512000; 2007CB512005, the Key Laboratory of the Chinese Ministry (number 2007A01) and the Hubei Province Natural Science Foundation of China (number 2008CDB147).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hua Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Cao, AL., Yu, M. et al. Th17 Cells Facilitate the Humoral Immune Response in Patients with Acute Viral Myocarditis. J Clin Immunol 30, 226–234 (2010). https://doi.org/10.1007/s10875-009-9355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-009-9355-z

Keywords

Navigation