Skip to main content

Advertisement

Log in

Patient safety issues in magnetic resonance imaging: state of the art

La safety del paziente in risonanza magnetica: stato dell’arte

  • Magnetic Resonance Imaging Risonanza Magnetica
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

The presence of a static magnetic field (Bo), a radiofrequency field (RF), a dynamic gradient which varies in time and loud noises during an MR examination could increase patient risk. Specifically, a magnetic field could interfere with ferromagnetic material leading to one of the following five dangerous interactions: 1) projectile effect, 2) twisting, 3) burning, 4) artefacts and 5) device malfunction. The projectile effect is when an object is attracted by the magnet with the risk, as reported in literature, of hitting the patient, operators and/or the instrument. Objects which typically can undergo this effect are oxygen and helium cylinders, IV stands, cleaning trolleys, chairs, lamp holders, scissors, forceps, clampers, traction weights, monitoring instruments, and especially metallic splinters within the patient. Twisting (torsion) typically occurs with cerebral vascular clamps and cochlear implants. If parts of implants are involved a malfunction may result. Burns can be caused when electrically conductive material is introduced within the magnet, for example, ECG electrodes, monitoring cables and coils which are in contact with the patient’s skin, as well as tattoos and eye-liners that contain iron-oxides. Artefacts can be induced by RF emission of implanted devices which can be mistaken for noise of the receiving coil. Implanted devices can induce signal voids which mask or simulate pathologies. Electrical or mechanical malfunction of implanted devices includes pacemakers which can stimulate inappropriately or at an elevated frequency yielding a distorted ECG with altered T-waves. The risk for patients can be reduced by specific educational programs within individual radiology departments which include other specializations and external referring physicians with the aim of developing a standardized safety protocol.

Riassunto

La presenza di un campo magnetico statico (Bo) all’interno della sala RM, di un campo di radiofrequenza (RF), di gradienti dinamici variabili nel tempo e di forte rumore durante l’esame comportano il possibile verificarsi di eventi con implicazioni per la sicurezza del paziente. In particolare il campo magnetico può interferire con materiale dotato di caratteristiche ferromagnetiche. Si possono riconoscere 5 tipologie di interazioni pericolose: 1) effetto proiettile, 2) twisting, 3) ustioni, 4) artefatti, 5) malfunzionamento di dispositivi. Effetto proiettile: quando l’attrazione magnetica sposta un oggetto verso il magnete. Questo fenomeno comporta un rischio di impatto con il paziente, con l’operatore o con il magnete stesso. Ci sono descrizioni in letteratura di danno o esiti fatali a carico del paziente. Oggetti che tipicamente possono subire questo effetto sono: bombole di ossigeno, piantane per le fleboclisi, bombole di elio, carrelli delle pulizie, sedie, fissatori di lampadine, forbici e clamper, pesi da trazione, pulsossimetri. Questo effetto può interessare anche schegge metalliche presenti nel corpo. Twisting (torsione): tipicamente le clips vascolari cerebrali e gli impianti cocleari. Vi sono poi oggetti parti di impianti o altri oggetti che possono esserne avulsi, determinando malfunzionamento dell’impianto o danno al paziente. Ustioni: in genere sono causate dall’introduzione di materiale elettrico conduttivo all’interno del magnete come elettrodi ECG, cavi del pulsossimetro, bobine in contatto con la superficie cutanea del paziente, ma anche tatuaggi, eye-liner che contengono ossido di ferro. Artefatti: si possono verificare artefatti dovuti a emissione di RF da parte di dispositivi, che viene considerata rumore dalla bobina di ricezione, oppure vuoto di segnale da componente metallica, che può mascherare o simulare una patologia. Malfunzionamento di dispositivo: tra gli altri, i pacemaker sono di particolare interesse; possono risultare malfunzionanti, stimolando al momento sbagliato oppure con una frequenza troppo elevata. Il tracciato ECG può risultare distorto con alterazioni delle onde T. Tramite un percorso didattico sia all’interno della propria struttura di lavoro, che verso l’esterno come gli altri specialisti, e adottando strategie comportamentali uniformi e codificate è possibile ridurre al minimo gli eventuali rischi per il paziente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References/Bibliografia

  1. Landrigan C (2001) Preventable deaths and injuries during magnetic resonance imaging. N Engl J Med 345:1000–1001

    Article  PubMed  CAS  Google Scholar 

  2. Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652

    Article  PubMed  Google Scholar 

  3. Chaljub G, Kramer LA, Johnson RF 3rd et al (2001) Projectile cylinder accidents resulting from the presence of ferromagnetic nitrous oxide or oxygen tanks in the MR suite. AJR Am J Roentgenol 177:27–30

    PubMed  CAS  Google Scholar 

  4. Chen DW (2001) Boy, 6, dies of skull injury during M. R. I. NY Times, Jul 31, Sec. B:1,5

  5. Shellock FG, Kanal E (1999) Aneurysm Clips: Effects of Long-term and Multiple Exposures to a 1.5-T MR System. Radiology 210:563–565

    PubMed  Google Scholar 

  6. Evans JC, Smith ET, Nixon TE (2001) A national survey of attitudes towards the use of MRI in patients known to have intracranial aneurysm clips. Brit J Radiol 74:1118–1120

    PubMed  CAS  Google Scholar 

  7. Lee Pride G, Kowal J, Mendelsohn DB et al (2000) Safety of MR scanning in patients with nonferromagnetic aneurysm clips. J Magn Reson Imaging 12:198–200

    Article  Google Scholar 

  8. Williamson MR, Espinosa MC, Boutin RD et al (1994) Metallic foreign bodies in the orbits of patients undergoing MR imaging: prevalence and value of radiography and CT before MR. AJR Am J Roentgenol 162:981–983

    PubMed  CAS  Google Scholar 

  9. Shuman WP, Haynor DR, Guy AW et al (1988) Superficial-and deep-tissue temperature increases in anesthetized dogs during exposure to high specific absorption rates in a 1.5-T MR imager. Radiology 167:551–554

    PubMed  CAS  Google Scholar 

  10. Gieszl R, Williams KD, Drayer BP, Keller PJ (1989) Magnetic resonance imaging and ferromagnetic bullets. Assoc Firearm and Tool Mark Examiners J 21:595–604

    Google Scholar 

  11. Teitelbaum GP, Yee CA, Van Horn DD et al (1990) Metallic ballistic fragments: MR imaging safety and artefacts. Radiology 175:855–859

    PubMed  CAS  Google Scholar 

  12. Hansen ME (1994) Is it safe to study patients with bullets, pullets, and other metallic shrapnel with MR imaging? AJR Am J Roentgenol 163:739–743

    PubMed  CAS  Google Scholar 

  13. Smugar S, Schweitzer ME, Hume E (1999) MRI in patients with intraspinal bullets. J Magn Reson Imaging 9:151–153

    Article  PubMed  CAS  Google Scholar 

  14. American Society for Testing and Materials (ASTM) Designation (2002) F 2052. Standard test method for measurement of magnetically induced displacement force on passive implants in the magnetic resonance environment. In: Annual Book of ASTM Standards, Section 13, Medical Devices and Services, Volume 13. 01 Medical Devices; Emergency Medical Services. West Conshohocken, PA, pp 1576-1580

  15. Shellock FG (2002) Biomedical implants and devices: assessment of magnetic field interactions with a 3.0-Tesla MR system. J Magn Reson Imaging 16:721–732

    Article  PubMed  Google Scholar 

  16. Pavlicek W, Geisinger M, Castle L et al (1983) The effects of NMR on patients with cardiac pacemakers. Radiology 147:149–153

    PubMed  CAS  Google Scholar 

  17. Mathur-De Vre R (1987) Safety aspects of magnetic resonance imaging and magnetic resonance spectroscopy applications in medicine and biology: I. Biomagnetic effects. Arch Belg 45:394–424

    PubMed  CAS  Google Scholar 

  18. Duru F, Luechinger R, Scheidegger MB et al (2001) Pacing in magnetic resonance imaging environment: clinical and technical considerations on compatibility. Eur Heart J 22:113–124

    Article  PubMed  CAS  Google Scholar 

  19. Shellock FG, Kanal E (1996) Magnetic resonance: bioeffects, safety and patient management, 2nd ed. Lippincott-Raven, Philadelphia, pp xxx–xxx

    Google Scholar 

  20. Buchli R, Boesiger P, Meier D (1988) Heating effects of metallic implants by MRI examinations. Magn Res Med 7:255–261

    Article  CAS  Google Scholar 

  21. Lauck G, von Smekal A, Jung W et al (1993) Influence of nuclear magnetic resonance imaging on software-controlled cardiac pacemakers (abstr). Pacing Clin Electrophysiol 16:1140

    Google Scholar 

  22. Avery JE (1988) Loss prevention case of the month: not my responsibility! J Tenn Med Assoc 81:523

    PubMed  CAS  Google Scholar 

  23. Martin ET, Coman JA, Shellock FG et al (2004) Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 43:1315–1324

    Article  PubMed  Google Scholar 

  24. Sommer T, Lauck G, Schimpf R et al (1998) MRI in patients with cardiac pacemakers: in vitro and in vivo evaluation at 0.5 Tesla. Rofo. 168:36–43

    PubMed  CAS  Google Scholar 

  25. Martin ET, Coman JA, Shellock FG et al (2004) Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 43:1315–1324

    Article  PubMed  Google Scholar 

  26. Hartnell GG, Spence L, Hughes LA et al (1997) Safety of MR imaging in patients who have retained metallic materials after cardiac surgery. AJR Am J Roentgenol 168:1157–1159

    PubMed  CAS  Google Scholar 

  27. Shellock FG, O’Neil M, Ivans V et al (1999) Cardiac pacemakers and implantable cardioverterdefibrillators are unaffected by operation of an extremity MR imaging system. AJR Am J Roentgenol 172:165–170

    PubMed  CAS  Google Scholar 

  28. Loewy J, Loewy A, Kendall EJ (2004) Reconsideration of pacemakers and MR imaging. RadioGraphics 24:1257–1268

    Article  PubMed  Google Scholar 

  29. Roguin A, Zviman MM, Meininger GR et al (2004) Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe: in vitro and in vivo assessment of safety and function at 1.5 T. Circulation 110:475–482

    Article  PubMed  Google Scholar 

  30. Shellock FG (2004) Reference manual for magnetic resonance safety, implants, and devices: 2004 edition. Biomedical Research Publishing Group, Los Angeles

    Google Scholar 

  31. Carr JJ (1995) Danger in performing MR imaging on women who have tattooed eyeliner or similar types of permanent cosmetic injections. AJR Am J Roentgenol 165:1546–1547

    PubMed  CAS  Google Scholar 

  32. Kreidstein ML, Giguere D, Freiberg A (1997) MRI interaction with tattoo pigments: case report, pathophysiology, and management. Plast Reconstr Surg 99:1717–1720

    Article  PubMed  CAS  Google Scholar 

  33. Vahlensieck M (2000) Tattoo-related cutaneous inflammation (burn grade I) in a mid-field MR scanner. [Letter] Eur Radiol 10:97

    Google Scholar 

  34. Whitney D,. Shellock FG (2002) Magnetic resonance imaging and permanent cosmetics (tattoos): survey of complications and adverse events. J Magn Reson Imaging 15:180–184

    Article  Google Scholar 

  35. Hess T, Stepanow B, Knopp MV (1996) Safety of intrauterine contraceptive device during MR imaging. Eur Radiol 6:66–68

    Article  PubMed  CAS  Google Scholar 

  36. Mark AS, Hricak H (1987) Intrauterine contraceptive devices: MR imaging. Radiology 162:311–314

    PubMed  CAS  Google Scholar 

  37. Shellock FG (2001) New metallic implant used for permanent contraception in women: evaluation of MR safety. Am J Radiol 178:1513–1516

    Google Scholar 

  38. Shellock FG (2001) Magnetic resonance: health effects and safety. CRC, Boca Raton

    Google Scholar 

  39. Shellock FG (2001) Pocket guide to metallic implants and MR procedures: update 2001. Lippincott-Raven Healthcare, New York

    Google Scholar 

  40. Shellock FG (2001) Reference manual for magnetic resonance safety. Amirsys, Salt Lake City

    Google Scholar 

  41. Girard N (2002) Fetal MR Imaging. Eur J Radiol 12:1869–1871

    Google Scholar 

  42. Breysem L, Bosmans H, Dymarkowski S et al (2003) The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur J Radiol 13:1538–1548

    Article  CAS  Google Scholar 

  43. Chong BW, Babcock CJ, Pang D, Ellis WG (1997) A magnetic resonance template for the normal cerebellar development in the human fetus. Neurosurgery 41:924–929

    Article  PubMed  CAS  Google Scholar 

  44. Chung HW, Chen CY, Zimmerman RA et al (2000) T2 weighted fast MR imaging with True FISP versus HASTE: comparative efficacy in the evaluation of normal fetal brain function. Am J Radiol 175:1375–1380

    CAS  Google Scholar 

  45. Garel C, Chantrel E, Brisse H et al (2001) Fetal cerebral cortex: normal gestational landmarks identified using prematal MR imaging. AJNR Am J Neuroradiol 22:184–189

    PubMed  CAS  Google Scholar 

  46. Huisman TAGM, Kubik-Huch RA, Marineck B (2002) Fetal magnetic resonance imaging: technical considerations and normal brain development. Eur J Radiol 12:1941–1951

    Google Scholar 

  47. Huisman TAGM, Wisser J, Martin E et al (2002) Fetal magnetic resonance imaging of the central nervous system. Eur J Radiol 12:1952–1961

    Google Scholar 

  48. Blaicher W, Prayer D, Bernasheck G (2003) Magnetic resonance imaging and ultrasound in the assessment of the central nervous system. J Perinat Med 31:459–468

    Article  PubMed  Google Scholar 

  49. Resta M, Medicamento N (1998) Magnetic resonance imaging of the normal and pathologic fetal brain. Childs Nervous System 14:151–154

    Article  CAS  Google Scholar 

  50. D’Ercole C, Girare N, Cravello L et al (1998) Prenatal diagnosis of fetal corpus callosum agenesis by ultrasonography and magnetic resonance imaging. Prenatal Diag 18:247–253

    Article  PubMed  CAS  Google Scholar 

  51. Levine D, Barnes PD, Madsen JR et al (1999) Central nervous system abnormalities assessed with prenatal magnetic resonance imaging. Obstet Gynecol 94:1011–1019

    Article  PubMed  CAS  Google Scholar 

  52. De Laveaucoupet J, Audibert F, Guis F et al (2001) Fetal magnetic resonance imaging of ischemic brain injury. Prenatal Diag 21:729–736

    Article  PubMed  Google Scholar 

  53. Turgut F, Turgut M, Onur E, Baskaja V (2001) In utero MR imaging and management of foetal hydrocephalus and NTDs in the third trimester. J Neurosurgical Sci 45:189–192

    CAS  Google Scholar 

  54. Denis D, Maugey-Laulom B, Carles D et al (2001) Prenatal diagnosis of schizencephaly by fetal magnetic resonance imaging. Fetal Diag Therapy 16:354–359

    Article  CAS  Google Scholar 

  55. Whitby E, Paley MN, Davies N et al (2001) Ultrafast magnetic resonance imaging of central nervous system abnormalities in utero in the second and third trimester of pregnancy: a comparison with ultrasound. Br J Obstet Gynecol 108:519–526

    Article  CAS  Google Scholar 

  56. Keller TM, Rake A, Michel SCA et al (2004) MR assessment of fetal lung development using lung volumes and signal intensities. Eur J Radiol 14:984–989

    Article  Google Scholar 

  57. Duncan KR, Baker P, Gowland PA et al (1997) Demonstration of changes in fetal liver erithropoiesis using echoplanar magnetic resonance imaging. Am J Physiol 273:G965–G967

    PubMed  CAS  Google Scholar 

  58. Kathary N, Bulas DI, Newman KD, Schoberg RL (2001) MRI imaging of fetal neck masses with airway compromise: utility in delivery planning. Pediatr Radiol 31:727–731

    Article  PubMed  CAS  Google Scholar 

  59. Cassart M, Massez A, Metens T et al (2004) Complementary role of MRI after sonography in assessing bilateral urinary tract anomalies in the fetus. Am J Radiol 182:689–695

    Google Scholar 

  60. Ong SS, Moore RJ, Warren AJ et al (2003) Myometrial and placental artery reactivity alone cannot explain reduced placental perfusion in pre-eclampsia and intrauterine growth restriction. Br J Obstet Gynecol 110:909–915

    Google Scholar 

  61. Trop I, Levine D (2001) Hemorrhage during pregnancy: sonography and MR imaging. Am J Radiol 176:607–615

    CAS  Google Scholar 

  62. Baker PN, Johnson IR, Boulby P, Gowland PA (1997) Measurement of amniotic fluid volumes using echoplanar imaging. J Obstet Gynecol 17:268–269

    CAS  Google Scholar 

  63. Zeeman GG, Hatab M, Twickler DM (2003) Maternal cerebral blood flow changes in pregnancy. Am J Obstet Gynecol 189:968–972

    Article  PubMed  Google Scholar 

  64. Zeeman GG, Fleckenstein JL, Twickler DM, Cunningham FG (2004) Cerebral infarction in eclampsia. Am J Obstet Gynecol 189:714–720

    Article  Google Scholar 

  65. Heinrichs WL, Fong P, Flannery M et al (1988) Midgestional exposure of pregnant Balb/C mice to magnetic resonance imaging conditions. Magn Reson Imaging 6:305–313

    Article  PubMed  CAS  Google Scholar 

  66. Beher KP, Tiffe HW, Hinz KH et al (1991) Nuclear magnetic resonance and the development of chicken embryos. Dtsche Tierarztl Wochenschr 98:149–152

    Google Scholar 

  67. Yip YP, Capriotti C, Talagala SL, Yip JW (1994) Effects of MR exposure at 1,5 T on early embryonic development of the chick J. Magn Reson Imaging 4:742–748

    Article  CAS  Google Scholar 

  68. Magin RL, Lee JK, Klintsova A et al (2000) Biological effects of long duration, high field (4T) MRI on growth and development in mouse. J Magn Reson Imaging 12:140–149

    Article  PubMed  CAS  Google Scholar 

  69. Baker PN, Johnson IR, Harvey P et al (1994) A three years follow up of children imaged in utero with echoplanar magnetic resonance imaging. Am J Obstet Gynecol 170:32–33

    PubMed  CAS  Google Scholar 

  70. Myers C, Duncan KR, Gowland PA et al (1998) Failure to detect intrauterine growth restriction following in utero exposure to MRI. Br J Radiol 71:549–551

    PubMed  CAS  Google Scholar 

  71. Edwards MJ, Saunders RD, Shiota K (2003) Effects of heats on embryos and foetuses. Int J Hyperthermia 19:295–324

    Article  PubMed  CAS  Google Scholar 

  72. Etzel RA, Balk SJ, Bearer CF et al (1997) Noise: a hazard for the fetus and newborn. Pediatrics 100:724–727

    Article  Google Scholar 

  73. Price D, De Wilde JP, Papadaki AM et al (2001) A survey of acoustic noise levels frome 1,5 MRI scanners. J Magn Reson Imaging 13:288–293

    Article  PubMed  CAS  Google Scholar 

  74. Glover P, Hykin J, Gowland P et al (1995) An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol 68:1090–1094

    Article  PubMed  CAS  Google Scholar 

  75. Webb JAW, Thomsen HS, Morcos SM (2005) The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol 15:1234–1240

    Article  PubMed  Google Scholar 

  76. Rofsky NM, Pizzarello DJ, Weinreb JC et al (1994) Effect on fetal mouse development of exposure to MR imaging and gadopentate dimeglumine. J Magn Reson Imaging 4:805–807

    Article  PubMed  CAS  Google Scholar 

  77. Soltys RA (1992) Summary of preclinical safety evaluation of gadoteridol injection. Invest Radiol 27(suppl 1):S7–S11

    PubMed  Google Scholar 

  78. Kanal E, Borgstede JP, Barkovich AJ et al (2004) American College of Radiology White Paper on MR Safety: 2004 update and revisions. AJR Am J Roentgenol 182:1111–1114

    PubMed  Google Scholar 

  79. Morsetti A, Bussi S, Tirone P, de Haen C (1999) Toxicological safety evaluation of gadobenate dimeglumine 0,5 M solution for injection (Multihance), a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23(suppl 1):S207–S217

    Google Scholar 

  80. Hylton M (2000) Suspension of breastfeeding following gadopentetate dimeglumine administration. Radiology 216:325–326

    PubMed  CAS  Google Scholar 

  81. Kubik-Huch RA, Gottstein-Aalame NM, Frenzel T et al (2000) Excretion of gadopentetate dimeglumine into human breast milk during lactation. Radiology 216:555–558

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Stecco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stecco, A., Saponaro, A. & Carriero, A. Patient safety issues in magnetic resonance imaging: state of the art. Radiol med 112, 491–508 (2007). https://doi.org/10.1007/s11547-007-0154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-007-0154-4

Key words

Parole chiave

Navigation