Skip to main content

Advertisement

Log in

Lipotoxicity in the heart

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Cardiomyopathy is associated with both rare genetic metabolic abnormalities and highly prevalent diseases characterized by elevated serum triglycerides and nonesterified fatty acids, such as obesity and type 2 diabetes. In these disorders, an imbalance between fatty acid uptake and utilization leads to the inappropriate accumulation of free fatty acids and neutral lipids within cardiomyocytes. Through the process of lipotoxicity, this lipid overload causes cellular dysfunction, cell death, and eventual organ dysfunction. This review focuses on lipotoxicity in the heart, with an emphasis on the contribution of this process to the pathogenesis of cardiomyopathy associated with obesity, diabetes, and the metabolic syndrome. The magnitude of the current worldwide epidemic of obesity and type 2 diabetes suggests that understanding the pathogenesis of cardiac complications associated with these diseases will contribute substantially to improvements in health care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Unger RH: Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 1995, 44:863–870.

    Article  PubMed  CAS  Google Scholar 

  2. Shulman GI: Cellular mechanisms of insulin resistance. J Clin Invest 2000, 106:171–176.

    PubMed  CAS  Google Scholar 

  3. Assimacopoulos-Jeannet F: Fat storage in pancreas and in insulin-sensitive tissues in pathogenesis of type 2 diabetes. Int J Obesity 2004, 28:553–557.

    Google Scholar 

  4. Foo RSY, Mani K, Kitsis RN: Death begets failure in the heart. J Clin Invest 2005, 115:565–571.

    Article  PubMed  CAS  Google Scholar 

  5. Kannel WB, Hjortland M, Castelli WP: Role of diabetes in congestive heart failure: The Framingham study. Am J Cardiol 1974, 34:29–34.

    Article  PubMed  CAS  Google Scholar 

  6. Hamby RI, Zoneraich S, Sherman S: Diabetic cardiomyopathy. JAMA 1974, 229:1749–1754.

    Article  PubMed  CAS  Google Scholar 

  7. Haffner SM, Lehto S, Ronnemma T, et al.: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without myocardial infarction. N Eng J Med 1998, 339:229–234.

    Article  CAS  Google Scholar 

  8. Lawrie GM, Morris GC, Glaeser DH: Influence of diabetes mellitus on the results of coronary bypass surgery. Follow-up of 212 diabetic patients 10 to 15 years after surgery. JAMA 1986, 256:2967.

    Article  PubMed  CAS  Google Scholar 

  9. Lee M, Gardin JM, Lynch JC, et al.: Diabetes mellitus and echocardiographic left ventricular function in free-living elderly men and women: The Cardiovascular Health Study. Am Heart J 1997, 133:36–43.

    Article  PubMed  CAS  Google Scholar 

  10. Schannwell CM, Schneppenheim M, Perings S, et al.: Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 2002, 98:33–39.

    Article  PubMed  CAS  Google Scholar 

  11. Kenchaiah S, Evans JD, Levy D, et al.: Obesity and the risk of heart failure. N Engl J Med 2002, 347:305–313.

    Article  PubMed  Google Scholar 

  12. Peterson LR, Waggoner AD, Schechtman KB, et al.: Alterations in left ventricular structure and function in young healthy obese women. J Am Coll Cardiol 2004, 43:1399–1404.

    Article  PubMed  Google Scholar 

  13. Barrett-Connor E, Grundy SM, Holdbrook MJ: Plasma lipids and diabetes mellitus in an adult community. Am J Epidemiol 1982, 115:657–663.

    PubMed  CAS  Google Scholar 

  14. Hallgren B, Stenhagen S, Svanborg A, et al.: Gas chromatographic analysis of the fatty acid composition of the plasma lipids in normal and diabetic subjects. J Clin Invest 1960, 39:1424–1434.

    PubMed  CAS  Google Scholar 

  15. Fraze E, Donner CC, Swislocki ALM, et al.: Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 1985, 61:807–811.

    Article  PubMed  CAS  Google Scholar 

  16. Davis MR, Shamoon H: Impaired glucose disposal following mild hypoglycemia in nondiabetic and type I diabetic humans. Metabolism 1992, 41:216–223.

    Article  PubMed  CAS  Google Scholar 

  17. Jensen MD, Haymond MW, Rizza RA, et al.: Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 1989, 83:1168–1173.

    PubMed  CAS  Google Scholar 

  18. Couillard C, Bergeron N, Prud’homme D, et al.: Postprandial triglyceride response in visceral obesity in men. Diabetes 1998, 47:953–960.

    Article  PubMed  CAS  Google Scholar 

  19. Paulson DJ, Crass MFI: Endogenous triacylglycerol metabolism in diabetic heart. Am J Physiol 1982, 242:H1084-H1094.

    PubMed  CAS  Google Scholar 

  20. Chattopadhyay J, Thompson EW, Schmid HHO: Elevated levels of nonesterified fatty acids in the myocardium of alloxan diabetic rats. Lipids 1990, 25:307–310.

    Article  PubMed  CAS  Google Scholar 

  21. Kenno DA, Severson DL: Lipolysis in isolated myocardial cells from diabetic rat hearts. Am J Physiol 1985, 249:1024–1030.

    Google Scholar 

  22. Zhou Y-T, Grayburn P, Karim A, et al.: Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A 2000, 97:1784–1789.

    Article  PubMed  CAS  Google Scholar 

  23. Christoffersen C, Bollano E, Lindegaard MLS, et al.: Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 2003, 144:3483–3490.

    Article  PubMed  CAS  Google Scholar 

  24. Han X, Abendschein AR, Kelley JG, et al.: Diabetes-induced changes in specific lipid molecular species in rat myocardium. Biochem J 2000, 352:79–89.

    Article  PubMed  CAS  Google Scholar 

  25. Hsu FF, Bohrer A, Wohltmann M, et al.: Electrospray ionization mass spectrometric analyses of changes in tissue phospholipid molcular species during the evolution of hyperlipidemia and hyperglycemia in Zucker diabetic fatty rats. Lipids 2000, 35:839–854.

    Article  PubMed  CAS  Google Scholar 

  26. Neely JR, Rovetto MJ, Oram JF: Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 1972, 15:289–329.

    Article  PubMed  CAS  Google Scholar 

  27. Belke DD, Larsen TS, Gibbs M, et al.: Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol 2000, 279:E1104-E1113.

    CAS  Google Scholar 

  28. Young ME, Guthrie PH, Razeghi P, et al.: Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 2002, 51:2587–2595.

    Article  PubMed  CAS  Google Scholar 

  29. Nielsen LB, Bartels ED, Bollano E: Overexpression of apolipoprotein B in the heart impedes cardiac triglyceride accumulation and development of cardiac dysfunction in diabetic mice. J Biol Chem 2002, 277:27014–27020.

    Article  PubMed  CAS  Google Scholar 

  30. Semeniuk LM, Kryski AJ, Severson SL: Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/ db-hGLUT4 mice. Am J Physiol 2002, 283:H976-H982.

    CAS  Google Scholar 

  31. Regan TJ, Khan MI, Jesrani MU, et al.: Alterations of myocardial function and metabolism in chronic diabetes mellitus. Recent Adv Stud Cardiac Struct Metab 1973, 3:169–178.

    PubMed  CAS  Google Scholar 

  32. Chiu H, Kovacs A, Ford D, et al.: A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 2000, 107:813–822.

    Article  Google Scholar 

  33. Finck BN, Lehman JJ, Leone TC, et al.: The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2001, 109:121–130. The lipotoxic cardiomyopathy observed in this transgenic mouse model is characterized by increased cardiac substrate uptake and utilization, neutral lipid accumulation, and systolic heart failure.

    Article  CAS  Google Scholar 

  34. Yagu H, Chen G, Yokoyama M, et al.: Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake produces a cardiomyopathy. J Clin Invest 2003, 111:419–426. In this transgenic mouse model, increased uptake of lipoproteinderived fatty acids by the heart leads to cardiomyocyte death and systolic dysfunction.

    Article  Google Scholar 

  35. Chiu HC, Kovacs A, Blanton RM, et al.: Transgenic expression of FATP1 in the heart causes lipotoxic cardiomyopathy. Circ Res 2005, 96:225–233. Increased uptake of free fatty acids by the heart leads to diastolic dysfunction in this mouse model, and thus may recapitulate lipidinduced changes observed in early diabetic cardiomyopathy.

    Article  PubMed  CAS  Google Scholar 

  36. Finck BN, Han X, Courtois M, et al.: A critical role for PPAR alpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 2003, 100:1226–1231.

    Article  PubMed  CAS  Google Scholar 

  37. Vikramadithyan RK, Hirata K, Yagyu H, et al.: Perosixome proliferator-activator receptor agonists modulate heart function in transgenic mice with lipotoxic cardiomyopathy. J Pharm Exp Ther 2005, 313:586–593.

    Article  CAS  Google Scholar 

  38. Lee Y, Naseem RH, Duplomb L, et al.: Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthetase transgenic mice. Proc Natl Acad Sci U S A 2004, 101:13624–13629. Pharmacologic doses of leptin completely reverse cardiac lipid accumulation and improve cardiomyopathy in the MHC-ACS mouse model, suggesting a potential treatment that may be extended to diabetic cardiomyopathy.

    Article  PubMed  CAS  Google Scholar 

  39. Inoguchi T, Li P, Umeda F, et al.: High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000, 49:1939–1945.

    Article  PubMed  CAS  Google Scholar 

  40. Listenberger LL, Ory DS, Schaffer JE: Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 2001, 276:14890–14895.

    Article  PubMed  CAS  Google Scholar 

  41. Cnop M, Hannaert Jc, Hoorens A, et al.: Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 2001, 50:1771–1777.

    Article  PubMed  CAS  Google Scholar 

  42. Maedler K, Spinas GA, Dyntar D, et al.: Distinct effects of saturated and monounsaturated fatty acids on B-cell turnover and function. Diabetes 2001, 50:69–76.

    Article  PubMed  CAS  Google Scholar 

  43. Ji J, Zhang L, Wang P, et al.: Saturated free fatty acid, palmitic acid, induces apoptosis in fetal hepatocytes in culture. Exp Toxicol Pathol 2005, 56:369–376.

    Article  PubMed  CAS  Google Scholar 

  44. de Vries JE, Vork MM, Roemen THM, et al.: Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res 1997, 38:1384–1394.

    PubMed  Google Scholar 

  45. Ostrander DB, Sparagna GC, Amoscato AA, et al.: Decreased cardiolipin synthesis corresponds with cytochrome C release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem 2001, 276:38061–38067.

    Article  PubMed  CAS  Google Scholar 

  46. Sparagna GC, Hickson-Bick DL, Buja LM, et al.: A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol 2000, 279:H2124-H2132.

    CAS  Google Scholar 

  47. Dyntar D, Eppenberger-Eberhardt M, Maedler K, et al.: Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 2001, 50:2105–2113.

    Article  PubMed  CAS  Google Scholar 

  48. Kong JY, Rabkin SW: Palmitate-induced cardiac apoptosis is mediated through CPT-1 but not influenced by glucose and insulin. Am J Physiol 2002, 282:H717-H725.

    CAS  Google Scholar 

  49. Listenberger LL, Han X, Lewis SL, et al.: Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003, 100:3077–3082.

    Article  PubMed  CAS  Google Scholar 

  50. Maedler K, Oberholzer J, Bucher P, et al.: Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic B-cell turnover and function. Diabetes 2003, 52:726–733.

    Article  PubMed  CAS  Google Scholar 

  51. Beeharry N, Chambers JA, Green IC: Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis 2004, 9:599–607.

    Article  PubMed  CAS  Google Scholar 

  52. Hardy S, Langelier Y, Prentki M: Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res 2000, 60:6353–6358.

    PubMed  CAS  Google Scholar 

  53. Newmeyer DD, Ferguson-Miller S: Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003, 112:481–490.

    Article  PubMed  CAS  Google Scholar 

  54. Kong JY, Rabkin SW: Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosporin A. Biochim Biophys Acta 2000, 1485:45–55.

    PubMed  CAS  Google Scholar 

  55. Kong JY, Rabkin SW: Mitochondrial effects with ceramideinduced cardiac apoptosis are different from those of palmitate. Arch Biochem Biophys 2003, 412:196–206.

    Article  PubMed  CAS  Google Scholar 

  56. Pettus BJ, Chalfant CE, Hannun YA: Ceramide in apoptosis: an overview and current perspectives. Biochim Biophys Acta 2002, 1585:114–125.

    PubMed  CAS  Google Scholar 

  57. Piro S, Anello M, Di Pietro C, et al.: Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 2002, 51:1340–1347.

    Article  PubMed  CAS  Google Scholar 

  58. Hickson-Bick DLM, Sparagna GC, Buja LM, et al.: Palmitateinduced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am J Physiol 2002, 282:H656-H664.

    CAS  Google Scholar 

  59. Demaurex N, Distelhorst C: Apoptosis—the calcium connection. Science 2003, 300:65–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borradaile, N.M., Schaffer, J.E. Lipotoxicity in the heart. Current Science Inc 7, 412–417 (2005). https://doi.org/10.1007/s11906-005-0035-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-005-0035-y

Keywords

Navigation