Skip to main content

Advertisement

Log in

Aldosterone Mediates Cardiac Fibrosis in the Setting of Hypertension

  • Adrenal and Nervous System Mechanisms (S Oparil, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Cardiac remodeling is a deleterious consequence of arterial hypertension. This remodeling results from cardiac transcriptomic changes induced by mechanical and hormonal factors. Angiotensin II and aldosterone often collaborate in pathological situations to induce hypertrophy of cardiomyocytes, vascular inflammation, perivascular and interstitial fibrosis, and microvascular rarefaction. Experimental models of transgenic mice overexpressing renin in liver, leading to increased plasma angiotensin II and severe hypertension, and mice overexpressing aldosterone-synthase in cardiomyocytes, leading to a doubling of intracardiac aldosterone concentration have shown that cardiac fibrosis in the heart depends on a balance between pro-fibrotic (TGF-ß, galectin-3) and anti-fibrotic (BNP, ANP) factors. Recent studies using cell-specific deletion of the mineralocorticoid receptor indicate that its activation in macrophages is a key step in the development of cardiac fibrosis in the setting of hemodynamic or hormonal challenges. This review focuses on the impact of inappropriate stimulation of aldosterone in the development of cardiac fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest are highlighted as: • Of Importance •• Of major importance

  1. Schiffrin EL. Vascular remodeling in hypertension: mechanisms and treatment. Hypertension. 2012;59:367–74.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst. 2006;7:3–14.

    Article  PubMed  CAS  Google Scholar 

  3. Tait SA, Tait JF, Coghlan JP. The discovery, isolation and identification of aldosterone: reflections on emerging regulation and function. Mol Cell Endocrinol. 2004;217:1–21.

    Article  PubMed  CAS  Google Scholar 

  4. Weber KT. Aldosterone in congestive heart failure. N Engl J Med. 2001;345:1689–97.

    Article  PubMed  CAS  Google Scholar 

  5. Gilbert KC, Brown NJ. Aldosterone and inflammation. Curr Opin Endocrinol Diabetes Obes. 2010;17:199–204.

    Article  PubMed  CAS  Google Scholar 

  6. Nguyen Dinh Cat A, Jaisser F. Extrarenal effects of aldosterone. Curr Opin Nephrol Hypertens. 2012;21:147–56.

    Article  PubMed  CAS  Google Scholar 

  7. Bois P, Selye H. 2-Methyl-9(alpha)-chlorocortisol, a new synthetic mineralocorticoid with unusually intense nephrotoxic actions. Can Med Assoc J. 1956;75:720–4.

    PubMed  CAS  Google Scholar 

  8. Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med. 1992;120:893–901.

    PubMed  CAS  Google Scholar 

  9. Sun Y, Zhang J, Lu L, et al. Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am J Pathol. 2002;161:1773–81.

    Article  PubMed  CAS  Google Scholar 

  10. Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993;25:563–75.

    Article  PubMed  CAS  Google Scholar 

  11. Robert V, Van Thiem N, Cheav SL, et al. Increased cardiac types I and III collagen mRNAs in aldosterone-salt hypertension. Hypertension. 1994;24:30–6.

    Article  PubMed  CAS  Google Scholar 

  12. Young M, Fullerton M, Dilley R, Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest. 1994;93:2578–83.

    Article  PubMed  CAS  Google Scholar 

  13. Messaoudi S, Azibani F, Delcayre C, Jaisser F. Aldosterone, mineralocorticoid receptor, and heart failure. Mol Cell Endocrinol. 2012;350:266–72.

    Article  PubMed  CAS  Google Scholar 

  14. •• Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341:709–17. This large clinical trial was the first demonstration of the efficacy of spironolactone in heart failure. The spectacular benefit of this old diuretic was unexpected, and it rejuvenated both the experimental research on MR antagonists and the interest of clinicians for this therapeutic class.

    Article  PubMed  CAS  Google Scholar 

  15. Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102:2700–6.

    Article  PubMed  CAS  Google Scholar 

  16. Weber KT, Sun Y, Bhattacharya SK, et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013;10:15–26.

    Article  PubMed  CAS  Google Scholar 

  17. Choisy SC, Arberry LA, Hancox JC, James AF. Increased susceptibility to atrial tachyarrhythmia in spontaneously hypertensive rat hearts. Hypertension. 2007;49:498–505.

    Article  PubMed  CAS  Google Scholar 

  18. He X, Gao X, Peng L, et al. Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad7. Circ Res. 2011;108:164–75.

    Article  PubMed  CAS  Google Scholar 

  19. • Milliez P, Girerd X, Plouin PF, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243–8. This study in hypertensive patients demonstrated a link between aldosterone and atrial fibrillation (a major risk of heart failure). It was already known that the atrial remodeling, namely the fibrosis, was a major cause of arrhythmias.

    Article  PubMed  CAS  Google Scholar 

  20. • Ouvrard-Pascaud A, Sainte-Marie Y, Benitah JP, et al. Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. Circulation. 2005;111:3025–33. An experimental study (the first using conditional MR overexpression) that demonstrated the critical role of the MR in triggering arrhythmias. This paper showed that fibrosis was not involved in this process: MR activation induces an electrical remodeling that is explained by changes of expression of ionic channels.

    Article  PubMed  CAS  Google Scholar 

  21. Milliez P, Gomes S, Champ-Rigot L, et al. Effects of spironolactone alone and in addition to a beta-blocker on myocardial histological and electrical remodeling in chronic severe failing rat hearts. J Cardiovasc Pharmacol. 2012;60:315–21.

    Article  PubMed  CAS  Google Scholar 

  22. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  PubMed  CAS  Google Scholar 

  23. Wang Q, Usinger W, Nichols B, et al. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4:4.

    Article  PubMed  Google Scholar 

  24. Lemarie CA, Paradis P, Schiffrin EL. New insights on signaling cascades induced by cross-talk between angiotensin II and aldosterone. J Mol Med (Berl). 2008;86:673–8.

    Article  CAS  Google Scholar 

  25. • Lemarie CA, Simeone SM, Nikonova A, et al. Aldosterone-induced activation of signaling pathways requires activity of angiotensin type 1a receptors. Circ Res. 2009;105:852–9. The interplay between AngII and aldosterone is important in the induction of cardiovascular fibrosis. This paper give clues on the signaling pathways involving these two hormones.

    Article  PubMed  CAS  Google Scholar 

  26. Rocha R, Martin-Berger CL, Yang P, et al. Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology. 2002;143:4828–36.

    Article  PubMed  CAS  Google Scholar 

  27. Keidar S, Kaplan M, Pavlotzky E, et al. Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone. Circulation. 2004;109:2213–20.

    Article  PubMed  CAS  Google Scholar 

  28. Virdis A, Neves MF, Amiri F, et al. Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension. 2002;40:504–10.

    Article  PubMed  CAS  Google Scholar 

  29. Mazak I, Fiebeler A, Muller DN, et al. Aldosterone potentiates angiotensin II-induced signaling in vascular smooth muscle cells. Circulation. 2004;109:2792–800.

    Article  PubMed  CAS  Google Scholar 

  30. de Boer RA, Voors AA, Muntendam P, et al. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11:811–7.

    Article  PubMed  Google Scholar 

  31. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    Article  PubMed  CAS  Google Scholar 

  32. • Azibani F, Benard L, Schlossarek S, et al. Aldosterone inhibits anti-fibrotic factors in mouse hypertensive heart. Hypertension. 2012;59:1179–87. This paper presents cardiac fibrosis as the result of a balance between pro-fibrotic and anti-fibrotic factors. This war, triggered by the association of aldosterone and AngII, saw the victory of the profibrotic factors. But it emerges from this paper that aldosterone, not only blocked the action of the valiant BNP, but also used an unfair trick: to recruit macrophages to invade the heart!.

    Article  PubMed  CAS  Google Scholar 

  33. • Calvier L, Miana M, Reboul P, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33:67–75. Galectin-3 interacts with numerous ligands such as cell surface receptors (integrins) and ECM proteins (collagen, elastin, fibronectin). This paper shows that galectin-3 is required for inflammatory and fibrotic responses to aldosterone in vascular smooth muscle cells in vitro and in vivo.

    Article  PubMed  CAS  Google Scholar 

  34. Kavvadas P, Weis L, Abed AB, et al. Renin inhibition reverses renal disease in transgenic mice by shifting the balance between profibrotic and antifibrotic agents. Hypertension. 2013;61:901–7.

    Article  PubMed  CAS  Google Scholar 

  35. Zeisberg M, Hanai J, Sugimoto H, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med. 2003;9:964–8.

    Article  PubMed  CAS  Google Scholar 

  36. Pregizer S, Mortlock DP. Control of BMP gene expression by long-range regulatory elements. Cytokine Growth Factor Rev. 2009;20:509–15.

    Article  PubMed  CAS  Google Scholar 

  37. Pachori AS, Custer L, Hansen D, et al. Bone morphogenetic protein 4 mediates myocardial ischemic injury through JNK-dependent signaling pathway. J Mol Cell Cardiol. 2010;48:1255–65.

    Article  PubMed  CAS  Google Scholar 

  38. Pegorier S, Campbell GA, Kay AB, Lloyd CM. Bone morphogenetic protein (BMP)-4 and BMP-7 regulate differentially transforming growth factor (TGF)-beta1 in normal human lung fibroblasts (NHLF). Respir Res. 2010;11:85.

    Article  PubMed  Google Scholar 

  39. Sun B, Huo R, Sheng Y, et al. Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. Hypertension. 2013;61:352–60.

    Article  PubMed  CAS  Google Scholar 

  40. Calvieri C, Rubattu S, Volpe M. Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med (Berl). 2012;90:5–13.

    Article  CAS  Google Scholar 

  41. Cohen-Solal A, Logeart D, Huang B, et al. Lowered B-type natriuretic peptide in response to levosimendan or dobutamine treatment is associated with improved survival in patients with severe acutely decompensated heart failure. J Am Coll Cardiol. 2009;53:2343–8.

    Article  PubMed  CAS  Google Scholar 

  42. Franco V, Chen YF, Oparil S, et al. Atrial natriuretic peptide dose-dependently inhibits pressure overload-induced cardiac remodeling. Hypertension. 2004;44:746–50.

    Article  PubMed  CAS  Google Scholar 

  43. •• Li P, Wang D, Lucas J, et al. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res. 2008;102:185–92. This paper details the mechanism of the anti-fibrotic action of the atrial natriuretic peptide. BNP acts by the same ways. So, these peptides are not only diuretic, but essential to limit, if possible, the cardiac fibrosis.

    Article  PubMed  CAS  Google Scholar 

  44. Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A. 2000;97:4239–44.

    Article  PubMed  CAS  Google Scholar 

  45. He JG, Chen YL, Chen BL, et al. B-type natriuretic peptide attenuates cardiac hypertrophy via the transforming growth factor-ss1/smad7 pathway in vivo and in vitro. Clin Exp Pharmacol Physiol. 2010;37:283–9.

    Article  PubMed  CAS  Google Scholar 

  46. Caron KM, James LR, Kim HS, et al. A genetically clamped renin transgene for the induction of hypertension. Proc Natl Acad Sci U S A. 2002;99:8248–52.

    Article  PubMed  CAS  Google Scholar 

  47. Huby AC, Rastaldi MP, Caron K, et al. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS One. 2009;4:e6721.

    Article  PubMed  Google Scholar 

  48. Garnier A, Bendall JK, Fuchs S, et al. Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation. 2004;110:1819–25.

    Article  PubMed  CAS  Google Scholar 

  49. Di Zhang A, Nguyen Dinh Cat A, Soukaseum C, et al. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension. 2008;52:1060–7.

    Article  PubMed  CAS  Google Scholar 

  50. Jaisser F, Swynghedauw B, Delcayre C. The mineralocorticoid receptor in heart: different effects in different cells. Hypertension. 2011;57:679–80.

    Article  PubMed  CAS  Google Scholar 

  51. Kuster GM, Kotlyar E, Rude MK, et al. Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation. 2005;111:420–7.

    Article  PubMed  CAS  Google Scholar 

  52. • Lother A, Berger S, Gilsbach R, et al. Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension. 2011;57:746–54. This paper, and the two following ones, took advantage of invalidation of the MR in mice to decipher the role of this receptor in different cell types. The present paper used fibroblast-specific and cardiomyocyte-specific MR KO; it showed that MR in cardiac myocytes, but not in fibroblasts, protect from cardiac dilatation and failure after chronic pressure overload.

    Article  PubMed  CAS  Google Scholar 

  53. •• Rickard AJ, Morgan J, Tesch G, et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension. 2009;54:537–43. This paper used macrophage-specific MR KO to demonstrate for the first time that macrophage recruitment is not altered by loss of MR signaling in these cells, and that a novel and significant role is seen for macrophage signaling in the regulation of cardiac fibrosis in the DOCA/salt model.

    Article  PubMed  CAS  Google Scholar 

  54. • Usher MG, Duan SZ, Ivaschenko CY, et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest. 2010;120:3350–64. This well documented study myeloid cells-specific knockout of the MR gene to show that myeloid MR is critical in controlling the macrophage polarization. Macrophages from myeloid MR KO mice exhibited a transcription profile of alternative activation. In isolated macrophages, pharmacologic MR blockade has similar effects, thus demonstrating that fibrosis depends of direct effects on the macrophages.

    Article  PubMed  CAS  Google Scholar 

  55. Bienvenu LA, Morgan J, Rickard AJ, et al. Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology. 2012;153:3416–25.

    Article  PubMed  CAS  Google Scholar 

  56. Funder JW. Aldosterone and mineralocorticoid receptors: a personal reflection. Mol Cell Endocrinol. 2012;350:146–50.

    Article  PubMed  CAS  Google Scholar 

  57. Messaoudi S, Gravez B, Tarjus A, et al. Aldosterone-specific activation of cardiomyocyte mineralocorticoid receptor in vivo. Hypertension. 2013;61:361–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Inserm, Université Paris-Diderot, the Fondation de France, and the Société Française d’Hypertension Artérielle (SFHTA).

Conflict of Interest

Feriel Azibani declares that she has no conflict of interest.

Loubina Fazal declares that she has no conflict of interest.

Christos Chatziantoniou declares that he has no conflict of interest.

Jane-Lise Samuel declares that she has no conflict of interest.

Claude Delcayre declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Delcayre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azibani, F., Fazal, L., Chatziantoniou, C. et al. Aldosterone Mediates Cardiac Fibrosis in the Setting of Hypertension. Curr Hypertens Rep 15, 395–400 (2013). https://doi.org/10.1007/s11906-013-0354-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0354-3

Keywords

Navigation