Skip to main content

Advertisement

Log in

Pharmacology of dipeptidyl peptidase-4 inhibitors and its use in the management of metabolic syndrome: a comprehensive review on drug repositioning

  • Review Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Objectives

Despite advances in our understanding of metabolic syndrome (MetS) and the treatment of each of its components separately, currently there is no single therapy approved to manage it as a single condition. Since multi-drug treatment increases drug interactions, decreases patient compliance and increases health costs, it is important to introduce single therapies that improve all of the MetS components.

Evidence acquisition

We conducted a PubMed, Scopus, Google Scholar, Web of Science, US FDA, utdo.ir and clinicaltrial.gov search, gathered the most relevant preclinical and clinical studies that have been published since 2010, and discussed the beneficial effects of dipeptidyl peptidase (DPP)-4 inhibitors to prevent and treat different constituent of the MetS as a single therapy. Furthermore, the pharmacology of DPP-4 inhibitors, focusing on pharmacodynamics, pharmacokinetics, drug interactions and their side effects are also reviewed.

Results

DPP-4 inhibitors or gliptins are a new class of oral anti-diabetic drugs that seem safe drugs with no severe side effects, commonly GI disturbance, infection and inflammatory bowel disease. They increase mass and function of pancreatic β-cells, and insulin sensitivity in liver, muscle and adipose tissue. It has been noted that gliptin therapy decreases dyslipidemia. DPP-4 inhibitors increase fatty oxidation, and cholesterol efflux, and decrease hepatic triglyceride synthase and de novo lipogenesis. They delay gastric emptying time and lead to satiety. Besides, gliptin therapy has anti-inflammatory and anti-atherogenic impacts, and improves endothelial function and reduces vascular stiffness.

Conclusion

The gathered data prove the efficacy of DPP-4 inhibitors in managing MetS in some levels beyond anti-diabetic effects. This review could be a lead for designing new DPP-4 inhibitors with greatest effects on MetS in future. Introducing drugs with polypharmacologic effects could increase the patient’s compliance and decrease the health cost that there is not in multi-drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

cAMP:

cyclic adenosine monophosphate

DPP-4:

dipeptidyl peptidase

eNOS:

endothelial NO synthesize

FBS:

fasting blood sugar

FDA:

US Food and Drug Administration

GIP:

gastric inhibitory polypeptide

GLP-1:

glucagon-like peptide

HbA1c:

hemoglobin A1c

HDL-C:

high-density lipoprotein cholesterol

IDL-C:

intermediate density lipoprotein cholesterol

LDL-C:

low-density lipoprotein cholesterol

P-gp:

P-glycoprotein

t 1/2 :

half-life

T1D:

type 1 diabetes

T2DM:

type 2 diabetes mellitus

VLDL-C:

very-low-density lipoprotein cholesterol

References

  1. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. https://doi.org/10.1007/s11906-018-0812-z.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation. 2005;112(17):2735–52. https://doi.org/10.1161/circulationaha.105.169404.

    Article  PubMed  Google Scholar 

  3. Masoudi-Kazemabad A, Jamialahmadi K, Moohebati M, Mojarrad M, Manshadi RD, Akhlaghi S, et al. Neuropeptide y Leu7Pro polymorphism associated with the metabolic syndrome and its features in patients with coronary artery disease. Angiology. 2013;64(1):40–5. https://doi.org/10.1177/0003319711435149.

    Article  CAS  PubMed  Google Scholar 

  4. Khayyatzadeh SS, Moohebati M, Mazidi M, Avan A, Tayefi M, Parizadeh SMR, et al. Nutrient patterns and their relationship to metabolic syndrome in Iranian adults. Eur J Clin Investig. 2016;46(10):840–52. https://doi.org/10.1111/eci.12666.

    Article  CAS  Google Scholar 

  5. Stojanoska MM, Milosevic N, Milic N, Abenavoli L. The influence of phthalates and bisphenol a on the obesity development and glucose metabolism disorders. Endocrine. 2017;55(3):666–81. https://doi.org/10.1007/s12020-016-1158-4.

    Article  CAS  PubMed  Google Scholar 

  6. Baghshini MR, Nikbakht-Jam I, Mohaddes-Ardabili H, Pasdar A, Avan A, Tayefi M, et al. Higher prevalence of metabolic syndrome among male employees of a gas refinery than in their counterparts in nonindustrial environments. Asian Biomedicine. 2017;11(3):227–34. https://doi.org/10.5372/1905-7415.1103.553.

    Article  Google Scholar 

  7. Rask Larsen J, Dima L, Correll CU, Manu P. The pharmacological management of metabolic syndrome. Expert Rev Clin Pharmacol. 2018;11(4):397–410. https://doi.org/10.1080/17512433.2018.1429910.

    Article  CAS  PubMed  Google Scholar 

  8. Martin KA, Mani MV, Mani A. New targets to treat obesity and the metabolic syndrome. Eur J Pharmacol. 2015;763(Pt A):64–74. https://doi.org/10.1016/j.ejphar.2015.03.093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57. https://doi.org/10.1053/j.gastro.2007.03.054.

    Article  CAS  PubMed  Google Scholar 

  10. Yazbeck R, Howarth GS, Abbott CA. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol Sci. 2009;30(11):600–7. https://doi.org/10.1016/j.tips.2009.08.003.

    Article  CAS  PubMed  Google Scholar 

  11. Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig. 2010;1(1–2):8–23. https://doi.org/10.1111/j.2040-1124.2010.00022.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barber TM, Begbie H, Levy J. The incretin pathway as a new therapeutic target for obesity. Maturitas. 2010;67(3):197–202. https://doi.org/10.1016/j.maturitas.2010.06.018.

    Article  CAS  PubMed  Google Scholar 

  13. Drucker DJ, Rosen CF. Glucagon-like peptide-1 (GLP-1) receptor agonists, obesity and psoriasis: diabetes meets dermatology. Diabetologia. 2011;54(11):2741–4. https://doi.org/10.1007/s00125-011-2297-z.

    Article  CAS  PubMed  Google Scholar 

  14. Nistala R, Savin V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am J Physiol Renal Physiol. 2017;312(4):F661–F70. https://doi.org/10.1152/ajprenal.00316.2016.

    Article  CAS  PubMed  Google Scholar 

  15. Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric. 2017;97(6):1679–85. https://doi.org/10.1002/jsfa.8134.

    Article  CAS  PubMed  Google Scholar 

  16. Razavi BM, Lookian F, Hosseinzadeh H. Protective effects of green tea on olanzapine-induced-metabolic syndrome in rats. Biomed Pharmacother. 2017;92:726–31. https://doi.org/10.1016/j.biopha.2017.05.113.

    Article  CAS  PubMed  Google Scholar 

  17. Tabeshpour J, Imenshahidi M, Hosseinzadeh H. A review of the effects of berberis vulgaris and its major component, berberine, in metabolic syndrome. Iran J Basic Med Sci. 2017;20(5):557–68. https://doi.org/10.22038/ijbms.2017.8682.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of avocado (Persea americana) on metabolic syndrome: a comprehensive systematic review. Phytother Res. 2017;31(6):819–37. https://doi.org/10.1002/ptr.5805.

    Article  PubMed  Google Scholar 

  19. Mazidi M, Rezaie P, Kengne AP, Mobarhan MG, Ferns GA. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr Clin Res Rev. 2016;10(2):S150–S7. https://doi.org/10.1016/j.dsx.2016.01.024.

    Article  Google Scholar 

  20. Sattigeri JA, Sethi S, Davis JA, Ahmed S, Rayasam GV, Jadhav BG, et al. Approaches towards the development of chimeric DPP4/ACE inhibitors for treating metabolic syndrome. Bioorg Med Chem Lett. 2017;27(11):2313–8. https://doi.org/10.1016/j.bmcl.2017.04.036.

    Article  CAS  PubMed  Google Scholar 

  21. Jackson EK. Dipeptidyl peptidase IV inhibition alters the hemodynamic response to angiotensin-converting enzyme inhibition in humans with the metabolic syndrome. Hypertension. 2010;56(4):581–3. https://doi.org/10.1161/hypertensionaha.110.158527.

    Article  CAS  PubMed  Google Scholar 

  22. Marney A, Kunchakarra S, Byrne L, Brown NJ. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans. Hypertension. 2010;56(4):728–33. https://doi.org/10.1161/hypertensionaha.110.156554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baetta R, Corsini A. Pharmacology of dipeptidyl peptidase-4 inhibitors: similarities and differences. Drugs. 2011;71(11):1441–67. https://doi.org/10.2165/11591400-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  24. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91(1):301–7. https://doi.org/10.1172/jci116186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Q, Long M, Qu H, Shen R, Zhang R, Xu J, et al. DPP-4 inhibitors as treatments for type 1 diabetes mellitus: a systematic review and meta-analysis. J Diabetes Res. 2018;2018:10. https://doi.org/10.1155/2018/5308582.

    Article  CAS  Google Scholar 

  26. De Silva A, Bloom SR. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver. 2012;6(1):10–20. https://doi.org/10.5009/gnl.2012.6.1.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scheen AJ. The safety of gliptins : updated data in 2018. Expert Opin Drug Saf. 2018;17(4):387–405. https://doi.org/10.1080/14740338.2018.1444027.

    Article  CAS  PubMed  Google Scholar 

  28. Deacon CF, Lebovitz HE. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diabetes Obes Metab. 2016;18(4):333–47. https://doi.org/10.1111/dom.12610.

    Article  CAS  PubMed  Google Scholar 

  29. Choy M, Lam S. Sitagliptin: a novel drug for the treatment of type 2 diabetes. Cardiol Rev. 2007;15(5):264–71. https://doi.org/10.1097/CRD.0b013e318123f771.

    Article  PubMed  Google Scholar 

  30. McCormack PL. Evogliptin: first global approval. Drugs. 2015;75(17):2045–9. https://doi.org/10.1007/s40265-015-0496-5.

    Article  CAS  PubMed  Google Scholar 

  31. Kadowaki T, Kondo K. Efficacy, safety and dose-response relationship of teneligliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2013;15(9):810–8. https://doi.org/10.1111/dom.12092.

    Article  CAS  PubMed  Google Scholar 

  32. Sheu WH, Gantz I, Chen M, Suryawanshi S, Mirza A, Goldstein BJ, et al. Safety and efficacy of Omarigliptin (MK-3102), a novel once-weekly DPP-4 inhibitor for the treatment of patients with type 2 diabetes. Diabetes Care. 2015;38(11):2106–14. https://doi.org/10.2337/dc15-0109.

    Article  CAS  PubMed  Google Scholar 

  33. Deacon CF. Dipeptidyl peptidase 4 inhibition with sitagliptin: a new therapy for type 2 diabetes. Expert Opin Investig Drugs. 2007;16(4):533–45. https://doi.org/10.1517/13543784.16.4.533.

    Article  CAS  PubMed  Google Scholar 

  34. Karagiannis T, Boura P, Tsapas A. Safety of dipeptidyl peptidase 4 inhibitors: a perspective review. Ther Adv Drug Saf. 2014;5(3):138–46. https://doi.org/10.1177/2042098614523031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tofovic DS, Bilan VP, Jackson EK. Sitagliptin augments angiotensin II-induced renal vasoconstriction in kidneys from rats with metabolic syndrome. Clin Exp Pharmacol Physiol. 2010;37(7):689–91. https://doi.org/10.1111/j.1440-1681.2010.05389.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2632–7. https://doi.org/10.2337/dc06-0703.

    Article  CAS  PubMed  Google Scholar 

  37. Traynor K. FDA approves saxagliptin for type 2 diabetes. Am J Health Syst Pharm. 2009;66(17):1513. https://doi.org/10.2146/news090069.

    Article  PubMed  Google Scholar 

  38. Rosenstock J, Aguilar-Salinas C, Klein E, Nepal S, List J, Chen R. Effect of saxagliptin monotherapy in treatment-naive patients with type 2 diabetes. Curr Med Res Opin. 2009;25(10):2401–11. https://doi.org/10.1185/03007990903178735.

    Article  CAS  PubMed  Google Scholar 

  39. Lam S, Saad M. Saxagliptin: a new dipeptidyl peptidase-4 inhibitor for type 2 diabetes. Cardiol Rev. 2010;18(4):213–7. https://doi.org/10.1097/CRD.0b013e3181daad5f.

    Article  PubMed  Google Scholar 

  40. Aletti R, Cheng-Lai A. Linagliptin: the newest dipeptidyl peptidase-4 inhibitor for type 2 diabetes mellitus. Cardiol Rev. 2012;20(1):45–51. https://doi.org/10.1097/CRD.0b013e31823a3afc.

    Article  PubMed  Google Scholar 

  41. Del Prato S, Barnett AH, Huisman H, Neubacher D, Woerle HJ, Dugi KA. Effect of linagliptin monotherapy on glycaemic control and markers of beta-cell function in patients with inadequately controlled type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2011;13(3):258–67. https://doi.org/10.1111/j.1463-1326.2010.01350.x.

    Article  PubMed  Google Scholar 

  42. Marino AB, Cole SW. Alogliptin: safety, efficacy, and clinical implications. J Pharm Pract. 2015;28(1):99–106. https://doi.org/10.1177/0897190014522063.

    Article  PubMed  Google Scholar 

  43. Covington P, Christopher R, Davenport M, Fleck P, Mekki QA, Wann ER, et al. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: a randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin Ther. 2008;30(3):499–512. https://doi.org/10.1016/j.clinthera.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  44. Chen XW, He ZX, Zhou ZW, Yang T, Zhang X, Yang YX, et al. An update on the clinical pharmacology of the dipeptidyl peptidase 4 inhibitor alogliptin used for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol. 2015;42(12):1225–38. https://doi.org/10.1111/1440-1681.12469.

    Article  CAS  PubMed  Google Scholar 

  45. Pi-Sunyer FX, Schweizer A, Mills D, Dejager S. Efficacy and tolerability of vildagliptin monotherapy in drug-naive patients with type 2 diabetes. Diabetes Res Clin Pract. 2007;76(1):132–8. https://doi.org/10.1016/j.diabres.2006.12.009.

    Article  CAS  PubMed  Google Scholar 

  46. Kim SH, Lee SH, Yim HJ. Gemigliptin, a novel dipeptidyl peptidase 4 inhibitor: first new anti-diabetic drug in the history of Korean pharmaceutical industry. Arch Pharm Res. 2013;36(10):1185–8. https://doi.org/10.1007/s12272-013-0171-x.

    Article  CAS  PubMed  Google Scholar 

  47. Gutch M, Joshi A, Kumar S, Agarwal A, Pahan RK, Razi SM. Gemigliptin: newer promising gliptin for type 2 diabetes mellitus. Indian J Endocr Metab. 2017;21(6):898–902. https://doi.org/10.4103/ijem.IJEM_20_17.

    Article  CAS  Google Scholar 

  48. Nishio S, Abe M, Ito H. Anagliptin in the treatment of type 2 diabetes: safety, efficacy, and patient acceptability. Diabetes Metab Syndr Obes. 2015;8:163–71. https://doi.org/10.2147/dmso.s54679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gu N, Park MK, Kim TE, Bahng MY, Lim KS, Cho SH, et al. Multiple-dose pharmacokinetics and pharmacodynamics of evogliptin (DA-1229), a novel dipeptidyl peptidase IV inhibitor, in healthy volunteers. Drug Des Devel Ther. 2014;8:1709–21. https://doi.org/10.2147/DDDT.S65678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Park J, Park SW, Yoon KH, Kim SR, Ahn KJ, Lee JH, et al. Efficacy and safety of evogliptin monotherapy in patients with type 2 diabetes and moderately elevated glycated haemoglobin levels after diet and exercise. Diabetes Obes Metab. 2017;19(12):1681–7. https://doi.org/10.1111/dom.12987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Burness CB. Omarigliptin: first global approval. Drugs. 2015;75(16):1947–52. https://doi.org/10.1007/s40265-015-0493-8.

    Article  CAS  PubMed  Google Scholar 

  52. Xu S, Tatosian D, McIntosh I, Caceres M, Matthews C, Samuel K, et al. Absorption, metabolism and excretion of [(14)C]omarigliptin, a once-weekly DPP-4 inhibitor, in humans. Xenobiotica. 2018;48(6):584–91. https://doi.org/10.1080/00498254.2017.1346333.

    Article  CAS  PubMed  Google Scholar 

  53. McKeage K. Trelagliptin: first global approval. Drugs. 2015;75(10):1161–4. https://doi.org/10.1007/s40265-015-0431-9.

    Article  CAS  PubMed  Google Scholar 

  54. Kaku K. First novel once-weekly DPP-4 inhibitor, trelagliptin, for the treatment of type 2 diabetes mellitus. Expert Opin Pharmacother. 2015;16(16):2539–47. https://doi.org/10.1517/14656566.2015.1099630.

    Article  CAS  PubMed  Google Scholar 

  55. Nakamaru Y, Hayashi Y, Ikegawa R, Kinoshita S, Perez Madera B, Gunput D, et al. Metabolism and disposition of the dipeptidyl peptidase IV inhibitor teneligliptin in humans. Xenobiotica. 2014;44(3):242–53. https://doi.org/10.3109/00498254.2013.816891.

    Article  CAS  PubMed  Google Scholar 

  56. Morishita R, Nakagami H. Teneligliptin : expectations for its pleiotropic action. Expert Opin Pharmacother. 2015;16(3):417–26. https://doi.org/10.1517/14656566.2015.1000301.

    Article  CAS  PubMed  Google Scholar 

  57. Furuta S, Smart C, Hackett A, Benning R, Warrington S. Pharmacokinetics and metabolism of [14C]anagliptin, a novel dipeptidyl peptidase-4 inhibitor, in humans. Xenobiotica. 2013;43(5):432–42. https://doi.org/10.3109/00498254.2012.731618.

    Article  CAS  PubMed  Google Scholar 

  58. Graefe-Mody U, Retlich S, Friedrich C. Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clin Pharmacokinet. 2012;51(7):411–27. https://doi.org/10.2165/11630900-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  59. Heise T, Graefe-Mody EU, Huttner S, Ring A, Trommeshauser D, Dugi KA. Pharmacokinetics, pharmacodynamics and tolerability of multiple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients. Diabetes Obes Metab. 2009;11(8):786–94. https://doi.org/10.1111/j.1463-1326.2009.01046.x.

    Article  CAS  PubMed  Google Scholar 

  60. Anderson R, Hayes J, Stephens JW. Pharmacokinetic, pharmacodynamic and clinical evaluation of saxagliptin in type 2 diabetes. Expert Opin Drug Metab Toxicol. 2016;12(4):467–73. https://doi.org/10.1517/17425255.2016.1154044.

    Article  CAS  PubMed  Google Scholar 

  61. Vincent SH, Reed JR, Bergman AJ, Elmore CS, Zhu B, Xu S, et al. Metabolism and excretion of the dipeptidyl peptidase 4 inhibitor [14C]sitagliptin in humans. Drug Metab Dispos. 2007;35(4):533–8. https://doi.org/10.1124/dmd.106.013136.

    Article  CAS  PubMed  Google Scholar 

  62. Bergman AJ, Stevens C, Zhou Y, Yi B, Laethem M, De Smet M, et al. Pharmacokinetic and pharmacodynamic properties of multiple oral doses of sitagliptin, a dipeptidyl peptidase-IV inhibitor: a double-blind, randomized, placebo-controlled study in healthy male volunteers. Clin Ther. 2006;28(1):55–72. https://doi.org/10.1016/j.clinthera.2006.01.015.

    Article  CAS  PubMed  Google Scholar 

  63. He YL, Wang Y, Bullock JM, Deacon CF, Holst JJ, Dunning BE, et al. Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. J Clin Pharmacol. 2007;47(5):633–41. https://doi.org/10.1177/0091270006299137.

    Article  CAS  PubMed  Google Scholar 

  64. He H, Tran P, Yin H, Smith H, Batard Y, Wang L, et al. Absorption, metabolism, and excretion of [14C]vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans. Drug Metab Dispos. 2009;37(3):536–44. https://doi.org/10.1124/dmd.108.023010.

    Article  CAS  PubMed  Google Scholar 

  65. Krishna R, Bergman A, Larson P, Cote J, Lasseter K, Dilzer S, et al. Effect of a single cyclosporine dose on the single-dose pharmacokinetics of sitagliptin (MK-0431), a dipeptidyl peptidase-4 inhibitor, in healthy male subjects. J Clin Pharmacol. 2007;47(2):165–74. https://doi.org/10.1177/0091270006296523.

    Article  CAS  PubMed  Google Scholar 

  66. Abrahami D, Douros A, Yin H, Yu OHY, Renoux C, Bitton A, et al. Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: population based cohort study. Br Med J. 2018;360:k872. https://doi.org/10.1136/bmj.k872.

    Article  Google Scholar 

  67. Srikanth S, Deedwania P. Management of Dyslipidemia in patients with hypertension, diabetes, and metabolic syndrome. Curr Hypertens Rep. 2016;18(10):76. https://doi.org/10.1007/s11906-016-0683-0.

    Article  CAS  PubMed  Google Scholar 

  68. Ervinna N, Mita T, Yasunari E, Azuma K, Tanaka R, Fujimura S, et al. Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo e-deficient mice. Endocrinology. 2013;154(3):1260–70. https://doi.org/10.1210/en.2012-1855.

    Article  CAS  PubMed  Google Scholar 

  69. Ta NN, Schuyler CA, Li Y, Lopes-Virella MF, Huang Y. DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice. J Cardiovasc Pharmacol. 2011;58(2):157–66. https://doi.org/10.1097/FJC.0b013e31821e5626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yano W, Inoue N, Ito S, Itou T, Yasumura M, Yoshinaka Y, et al. Mechanism of lipid-lowering action of the dipeptidyl peptidase-4 inhibitor, anagliptin, in low-density lipoprotein receptor-deficient mice. J Diabetes Investig. 2017;8(2):155–60. https://doi.org/10.1111/jdi.12593.

    Article  CAS  PubMed  Google Scholar 

  71. Rufinatscha K, Radlinger B, Dobner J, Folie S, Bon C, Profanter E, et al. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes. Biochem Biophys Res Commun. 2017;485(2):366–71. https://doi.org/10.1016/j.bbrc.2017.02.071.

    Article  CAS  PubMed  Google Scholar 

  72. Mostafa AM, Hamdy NM, Abdel-Rahman SZ, El-Mesallamy HO. Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes. IUBMB Life. 2016:535–43. https://doi.org/10.1002/iub.1510.

  73. Renna NF, Diez EA, Miatello RM. Effects of dipeptidyl-peptidase 4 inhibitor about vascular inflammation in a metabolic syndrome model. PloS one. 2014;9(9):e106563-e. https://doi.org/10.1371/journal.pone.0106563.

    Article  CAS  Google Scholar 

  74. Briand F, Thieblemont Q, Burcelin R, Sulpice T. Sitagliptin promotes macrophage-to-faeces reverse cholesterol transport through reduced intestinal cholesterol absorption in obese insulin resistant CETP-apoB100 transgenic mice. Diabetes Obes Metab. 2012;14(7):662–5. https://doi.org/10.1111/j.1463-1326.2012.01568.x.

    Article  CAS  PubMed  Google Scholar 

  75. Xu B, Shen T, Chen L, Xia J, Zhang C, Wang H, et al. The effect of sitagliptin on lipid metabolism of fatty liver mice and related mechanisms. Med Sci Monit. 2017;23:1363–70. https://doi.org/10.12659/MSM.900033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aroor AR, Habibi J, Ford DA, Nistala R, Lastra G, Manrique C, et al. Dipeptidyl peptidase-4 inhibition ameliorates western diet-induced hepatic steatosis and insulin resistance through hepatic lipid remodeling and modulation of hepatic mitochondrial function. Diabetes. 2015;64(6):1988–2001. https://doi.org/10.2337/db14-0804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu H, Li N, Liu Y, Xing J, Feng S, Li M, et al. The dipeptidyl peptidase-4 inhibitor teneligliptin reduces kidney damage from hypercholesterolemia in apolipoprotein E-deficient mice. RSC Adv. 2017;7(14):8702–8. https://doi.org/10.1039/c6ra26718a.

    Article  CAS  Google Scholar 

  78. Choi SH, Leem J, Park S, Lee CK, Park KG, Lee IK. Gemigliptin ameliorates western-diet-induced metabolic syndrome in mice. Can J Physiol Pharmacol. 2017;95(2):129–39. https://doi.org/10.1139/cjpp-2015-0026.

    Article  CAS  PubMed  Google Scholar 

  79. Zeng Y, Li C, Guan M, Zheng Z, Li J, Xu W, et al. The DPP-4 inhibitor sitagliptin attenuates the progress of atherosclerosis in apolipoprotein-E-knockout mice via AMPK- and MAPK-dependent mechanisms. Cardiovasc Diabetol. 2014;13(1). https://doi.org/10.1186/1475-2840-13-32.

  80. Hirano T, Yamashita S, Takahashi M, Hashimoto H, Mori Y, Goto M. Anagliptin, a dipeptidyl peptidase-4 inhibitor, decreases macrophage infiltration and suppresses atherosclerosis in aortic and coronary arteries in cholesterol-fed rabbits. Metabolism. 2016;65(6):893–903. https://doi.org/10.1016/j.metabol.2016.03.010.

    Article  CAS  PubMed  Google Scholar 

  81. Brenner C, Franz WM, Kühlenthal S, Kuschnerus K, Remm F, Gross L, et al. DPP-4 inhibition ameliorates atherosclerosis by priming monocytes into M2 macrophages. Int J Cardiol. 2015;199:163–9. https://doi.org/10.1016/j.ijcard.2015.07.044.

    Article  CAS  PubMed  Google Scholar 

  82. Shah Z, Pineda C, Kampfrath T, Maiseyeu A, Ying Z, Racoma I, et al. Acute DPP-4 inhibition modulates vascular tone through GLP-1 independent pathways. Vasc Pharmacol. 2011;55(1–3):2–9. https://doi.org/10.1016/j.vph.2011.03.001.

    Article  CAS  Google Scholar 

  83. Liu L, Liu J, Wong WT, Tian XY, Lau CW, Wang YX, et al. Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension. 2012;60(3):833–41. https://doi.org/10.1161/HYPERTENSIONAHA.112.195115.

    Article  CAS  PubMed  Google Scholar 

  84. Hamidi Shishavan M, Henning RH, Van Buiten A, Goris M, Deelman LE, Buikema H. Metformin improves endothelial function and reduces blood pressure in diabetic spontaneously hypertensive rats independent from glycemia control: comparison to vildagliptin. Sci Rep. 2017;7(1). https://doi.org/10.1038/s41598-017-11430-7.

  85. Koibuchi N, Hasegawa Y, Katayama T, Toyama K, Uekawa K, Sueta D, et al. DPP-4 inhibitor linagliptin ameliorates cardiovascular injury in salt-sensitive hypertensive rats independently of blood glucose and blood pressure. Cardiovasc Diabetol. 2014;13(1). https://doi.org/10.1186/s12933-014-0157-0.

  86. Nakagami H, Pang Z, Shimosato T, Moritani T, Kurinami H, Koriyama H, et al. The dipeptidyl peptidase-4 inhibitor teneligliptin improved endothelial dysfunction and insulin resistance in the SHR/NDmcr-cp rat model of metabolic syndrome. Hypertens Res. 2014;37(7):629–35. https://doi.org/10.1038/hr.2014.53.

    Article  CAS  PubMed  Google Scholar 

  87. Reis F, Ferreira L, Teixeira-De-Lemos E, Pinto F, Parada B, Mega C, et al. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat). Mediat Inflamm. 2010;2010:1–11. https://doi.org/10.1155/2010/592760.

    Article  CAS  Google Scholar 

  88. Chen B, Moore A, Escobedo LV, Koletsky MS, Hou D, Koletsky RJ, et al. Sitagliptin lowers glucagon and improves glucose tolerance in prediabetic obese SHROB rats. Exp Biol Med (Maywood, NJ). 2011;236(3):309–14. https://doi.org/10.1258/ebm.2010.010161.

    Article  CAS  Google Scholar 

  89. Takeda Y, Fujita Y, Honjo J, Yanagimachi T, Sakagami H, Takiyama Y, et al. Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diabetologia. 2012;55(2):404–12. https://doi.org/10.1007/s00125-011-2365-4.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang X, Wang Z, Huang Y, Wang J. Effects of chronic administration of alogliptin on the development of diabetes and β-cell function in high fat diet/streptozotocin diabetic mice. Diabetes Obes Metab. 2011;13(4):337–47. https://doi.org/10.1111/j.1463-1326.2010.01354.x.

    Article  CAS  PubMed  Google Scholar 

  91. Turcot V, Bouchard L, Faucher G, Tchernof A, Deshaies Y, Pérusse L, et al. DPP4 gene DNA methylation in the omentum is associated with its gene expression and plasma lipid profile in severe obesity. Obesity. 2011;19(2):388–95. https://doi.org/10.1038/oby.2010.198.

    Article  CAS  PubMed  Google Scholar 

  92. Monami M, Vitale V, Ambrosio ML, Bartoli N, Toffanello G, Ragghianti B, et al. Effects on lipid profile of dipeptidyl peptidase 4 inhibitors, pioglitazone, acarbose, and sulfonylureas: meta-analysis of placebo-controlled trials. Adv Ther. 2012;29(9):736–46. https://doi.org/10.1007/s12325-012-0045-5.

    Article  CAS  PubMed  Google Scholar 

  93. Homma K, Yoshizawa J, Shiina Y, Ozawa H, Igarashi M, Matsuoka T, et al. A dipeptidyl Peptidase-4 inhibitor, teneligliptin, decreases plasma triglyceride-rich lipoprotein remnants in diabetic patients with chronic kidney disease undergoing hemodialysis. Drugs in R and D. 2017;17(3):397–402. https://doi.org/10.1007/s40268-017-0189-5.

    Article  CAS  PubMed  Google Scholar 

  94. Tahara N, Yamagishi SI, Bekki M, Kodama N, Nakamura T, Sugiyama Y, et al. Anagliptin, a dipeptidyl peptidase-4 inhibitor ameliorates arterial stiffness in association with reduction of remnant-like particle cholesterol and alanine transaminase levels in type 2 diabetic patients. Curr Vasc Pharmacol. 2016;14(6):552–62. https://doi.org/10.2174/1570161114666160625090212.

    Article  CAS  PubMed  Google Scholar 

  95. Ahn CH, Kim EK, Min SH, Oh TJ, Cho YM. Effects of gemigliptin, a dipeptidyl peptidase-4 inhibitor, on lipid metabolism and endotoxemia after a high-fat meal in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19(3):457–62. https://doi.org/10.1111/dom.12831.

    Article  CAS  PubMed  Google Scholar 

  96. Fan M, Li Y, Zhang S. Effects of sitagliptin on lipid profiles in patients with type 2 diabetes mellitus: A meta-analysis of randomized clinical trials. Medicine (United States). 2016;95(2). https://doi.org/10.1097/MD.0000000000002386.

  97. Tremblay AJ, Lamarche B, Kelly I, Charest A, Lépine MC, Droit A, et al. Effect of sitagliptin therapy on triglyceride-rich lipoprotein kinetics in patients with type 2 diabetes. Diabetes Obes Metab. 2014;16(12):1223–9. https://doi.org/10.1111/dom.12359.

    Article  CAS  PubMed  Google Scholar 

  98. Tsurutani Y, Omura M, Matsuzawa Y, Saito J, Higa M, Taniyama M, et al. Efficacy and safety of the dipeptidyl Peptidase-4 inhibitor Sitagliptin on atherosclerosis, β-cell function, and glycemic control in Japanese patients with type 2 diabetes mellitus who are treatment Naïve or poorly responsive to Antidiabetes agents: a multicenter, prospective observational, uncontrolled study. Curr Ther Res Clin Exp. 2017;84:26–31. https://doi.org/10.1016/j.curtheres.2016.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duvnjak L, Blaslov K. Dipeptidyl peptidase-4 inhibitors improve arterial stiffness, blood pressure, lipid profile and inflammation parameters in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2016;8(1). https://doi.org/10.1186/s13098-016-0144-6.

  100. Evans M, Schweizer A, Foley JE. Blood pressure and fasting lipid changes after 24 weeks’ treatment with vildagliptin: a pooled analysis in >2,000 previously drug-naïve patients with type 2 diabetes mellitus. Vasc Health Risk Manag. 2016;12:337–40. https://doi.org/10.2147/VHRM.S112148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kusunoki M, Sato D, Nakamura T, Oshida Y, Tsutsui H, Natsume Y, et al. The beneficial effects of the DPP-4 inhibitor Alogliptin on hemoglobin A1c and serum lipids in Japanese patients with type 2 diabetes. Drug Res. 2015;66(1):18–22. https://doi.org/10.1055/s-0035-1547254.

    Article  CAS  Google Scholar 

  102. Kakuda H, Kobayashi J, Kakuda M, Yamakawa J, Takekoshi N. The effect of anagliptin treatment on glucose metabolism and lipid metabolism, and oxidative stress in fasting and postprandial states using a test meal in Japanese men with type 2 diabetes. Endocrine. 2015;48(3):1005–9. https://doi.org/10.1007/s12020-014-0376-x.

    Article  CAS  PubMed  Google Scholar 

  103. Sakura H, Hashimoto N, Sasamoto K, Ohashi H, Hasumi S, Ujihara N, et al. Effect of sitagliptin on blood glucose control in patients with type 2 diabetes mellitus who are treatment naive or poorly responsive to existing antidiabetic drugs: The JAMP study. BMC Endocr Disord. 2016;16(1). https://doi.org/10.1186/s12902-016-0149-z.

  104. Amber CF, Zeynep TK, Evren O, Yusuf B, Can AK, Belma T. Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation. Mol Biol Rep. 2014;41(8):4853–63. https://doi.org/10.1007/s11033-014-3392-2.

    Article  CAS  PubMed  Google Scholar 

  105. Liu L, Liu J, Tian XY, Wong WT, Lau CW, Xu A, et al. Uncoupling protein-2 mediates DPP-4 inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress. Antioxid Redox Signal. 2014;21(11):1571–81. https://doi.org/10.1089/ars.2013.5519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Devin JK, Pretorius M, Nian H, Yu C, Billings FT, Brown NJ. Dipeptidyl-peptidase 4 inhibition and the vascular effects of glucagon-like peptide-1 and brain natriuretic peptide in the human forearm. J Am Heart Assoc. 2014;3(4). https://doi.org/10.1161/jaha.114.001075.

  107. Wilson JR, Brown NJ, Nian H, Yu C, Bidlingmaier M, Devin JK. Dipeptidyl peptidase-4 inhibition potentiates stimulated growth hormone secretion and vasodilation in women. J Am Heart Assoc. 2018;7(5). https://doi.org/10.1161/jaha.117.008000.

  108. Ogawa S, Ishiki M, Nako K, Okamura M, Senda M, Mori T, et al. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, decreases systolic blood pressure in Japanese hypertensive patients with type 2 diabetes. Tohoku J Exp Med. 2011;223(2):133–5. https://doi.org/10.1620/tjem.223.133.

    Article  CAS  PubMed  Google Scholar 

  109. Kawasaki I, Hiura Y, Tamai A, Yoshida Y, Yakusiji Y, Ikuno Y, et al. Sitagliptin reduces the urine albumin-to-creatinine ratio in type 2 diabetes through decreasing both blood pressure and estimated glomerular filtration rate. J Diabetes. 2015;7(1):41–6. https://doi.org/10.1111/1753-0407.12153.

    Article  CAS  PubMed  Google Scholar 

  110. Cosenso-Martin LN, Giollo-Júnior LT, Martineli DD, Cesarino CB, Nakazone MA, Cipullo JP, et al. Twelve-week randomized study to compare the effect of vildagliptin vs. glibenclamide both added-on to metformin on endothelium function in patients with type 2 diabetes and hypertension. Diabetol Metab Syndr. 2015;7(1). https://doi.org/10.1186/s13098-015-0062-z.

  111. Koren S, Shemesh-Bar L, Tirosh A, Peleg RK, Berman S, Hamad RA, et al. The effect of sitagliptin versus glibenclamide on arterial stiffness, blood pressure, lipids, and inflammation in type 2 diabetes mellitus patients. Diabetes Technol Ther. 2012;14(7):561–7. https://doi.org/10.1089/dia.2011.0296.

    Article  CAS  PubMed  Google Scholar 

  112. Widlansky ME, Puppala VK, Suboc TM, Malik M, Branum A, Signorelli K, et al. Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc Med (London, England). 2017;22(3):189–96. https://doi.org/10.1177/1358863x16681486.

    Article  CAS  Google Scholar 

  113. Zhang X, Zhao Q. Effects of dipeptidyl peptidase-4 inhibitors on blood pressure in patients with type 2 diabetes: a systematic review and meta-analysis. J Hypertens. 2016;34(2):167–75. https://doi.org/10.1097/HJH.0000000000000782.

    Article  CAS  PubMed  Google Scholar 

  114. Jelsing J, Vrang N, van Witteloostuijn SB, Mark M, Klein T. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves beta-cell mass in non-obese diabetic mice. J Endocrinol. 2012;214(3):381–7. https://doi.org/10.1530/joe-11-0479.

    Article  CAS  PubMed  Google Scholar 

  115. Akarte AS, Srinivasan BP, Gandhi S. Vildagliptin selectively ameliorates GLP-1, GLUT4, SREBP-1c mRNA levels and stimulates beta-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes. J Diabetes Complicat. 2012;26(4):266–74. https://doi.org/10.1016/j.jdiacomp.2012.03.013.

    Article  PubMed  Google Scholar 

  116. Otsuka Y, Yamaguchi S, Furukawa A, Kosuda M, Nakazaki M, Ishihara H. Addition of sitagliptin or metformin to insulin monotherapy improves blood glucose control via different effects on insulin and glucagon secretion in hyperglycemic Japanese patients with type 2 diabetes. Endocr J. 2015;62(2):133–43. https://doi.org/10.1507/endocrj.EJ14-0148.

    Article  CAS  PubMed  Google Scholar 

  117. Seck TL, Engel SS, Williams-Herman DE, Sisk CM, Golm GT, Wang H, et al. Sitagliptin more effectively achieves a composite endpoint for A1C reduction, lack of hypoglycemia and no body weight gain compared with glipizide. Diabetes Res Clin Pract. 2011;93(1):e15–e7. https://doi.org/10.1016/j.diabres.2011.03.006.

    Article  CAS  PubMed  Google Scholar 

  118. Krobot KJ, Ferrante SA, Davies MJ, Seck T, Meininger GE, Williams-Herman D, et al. Lower risk of hypoglycemia with sitagliptin compared to glipizide when either is added to metformin therapy: a pre-specified analysis adjusting for the most recently measured HbA1c value. Curr Med Res Opin. 2012;28(8):1281–7. https://doi.org/10.1185/03007995.2012.703134.

    Article  CAS  PubMed  Google Scholar 

  119. Vellanki P, Smiley DD, Stefanovski D, Anzola I, Duan W, Hudson M, et al. Randomized controlled study of metformin and Sitagliptin on Long-term Normoglycemia remission in African American patients with hyperglycemic crises. Diabetes Care. 2016;39(11):1948–55. https://doi.org/10.2337/dc16-0406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kusunoki Y, Katsuno T, Myojin M, Miyakoshi K, Ikawa T, Matsuo T, et al. Effect of additional administration of acarbose on blood glucose fluctuations and postprandial hyperglycemia in patients with type 2 diabetes mellitus under treatment with alogliptin. Endocr J. 2013;60(4):431–9.

    CAS  PubMed  Google Scholar 

  121. Osonoi T, Saito M, Tamasawa A, Ishida H, Osonoi Y. Effects of sitagliptin or mitiglinide as an add-on to acarbose on daily blood glucose fluctuations measured by 72 h subcutaneous continuous glucose monitoring in Japanese patients with type 2 diabetes: a prospective randomized study. Expert Opin Pharmacother. 2014;15(10):1325–35. https://doi.org/10.1517/14656566.2014.920323.

    Article  CAS  PubMed  Google Scholar 

  122. Pasquel FJ, Gianchandani R, Rubin DJ, Dungan KM, Anzola I, Gomez PC, et al. Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol. 2017;5(2):125–33. https://doi.org/10.1016/s2213-8587(16)30402-8.

    Article  CAS  PubMed  Google Scholar 

  123. Dejager S, Schweizer A. Minimizing the risk of hypoglycemia with vildagliptin: clinical experience, mechanistic basis, and importance in type 2 diabetes management. Diabetes Ther. 2011;2(2):51–66. https://doi.org/10.1007/s13300-010-0018-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ahrén B, Foley JE, Dejager S, Akacha M, Shao Q, Heimann G, et al. Higher risk of hypoglycemia with glimepiride versus Vildagliptin in patients with type 2 diabetes is not driven by high doses of glimepiride: divergent patient susceptibilities? Diabetes Ther. 2014;5(2):459–69. https://doi.org/10.1007/s13300-014-0082-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang W, Xing X, Lv X, Li Y, Ma J, Yuan G, et al. Vildagliptin added to sulfonylurea improves glycemic control without hypoglycemia and weight gain in Chinese patients with type 2 diabetes mellitus. J Diabetes. 2015;7(2):174–81. https://doi.org/10.1111/1753-0407.12169.

    Article  CAS  PubMed  Google Scholar 

  126. Ning G, Wang W, Li L, Ma J, Lv X, Yang M, et al. Vildagliptin as add-on therapy to insulin improves glycemic control without increasing risk of hypoglycemia in Asian, predominantly Chinese, patients with type 2 diabetes mellitus. J Diabetes. 2016;8(3):345–53. https://doi.org/10.1111/1753-0407.12303.

    Article  CAS  PubMed  Google Scholar 

  127. Qiu Y, Luan X, Chen J, Kong Y, Xu X. Effects of vildagliptin on blood glucose fluctuation in patients with end-stage renal disease under hemodialysis in type 2 diabetes mellitus. Int J Clin Exp Med. 2016;9(6):9557–62.

    CAS  Google Scholar 

  128. Aravind SR, Ismail SB, Balamurugan R, Gupta JB, Wadhwa T, Loh SM, et al. Hypoglycemia in patients with type 2 diabetes from India and Malaysia treated with sitagliptin or a sulfonylurea during Ramadan: a randomized, pragmatic study. Curr Med Res Opin. 2012;28(8):1289–96. https://doi.org/10.1185/03007995.2012.707119.

    Article  CAS  PubMed  Google Scholar 

  129. Mbanya JC, Al-Sifri S, Abdel-Rahim A, Satman I. Incidence of hypoglycemia in patients with type 2 diabetes treated with gliclazide versus DPP-4 inhibitors during Ramadan: a meta-analytical approach. Diabetes Res Clin Pract. 2015;109(2):226–32. https://doi.org/10.1016/j.diabres.2015.04.030.

    Article  CAS  PubMed  Google Scholar 

  130. Raju A, Shetty S, Cai B, D'Souza AO. Hypoglycemia incidence rates and associated health care costs in patients with type 2 diabetes mellitus treated with second-line linagliptin or sulfonylurea after metformin monotherapy. J Manag Care Spec Pharm. 2016;22(5):483–92. https://doi.org/10.18553/jmcp.2016.22.5.483.

    Article  PubMed  Google Scholar 

  131. Eto T, Inoue S, Kadowaki T. Effects of once-daily teneligliptin on 24-h blood glucose control and safety in Japanese patients with type 2 diabetes mellitus: a 4-week, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2012;14(11):1040–6. https://doi.org/10.1111/j.1463-1326.2012.01662.x.

    Article  CAS  PubMed  Google Scholar 

  132. Sicras-Mainar A, Navarro-Artieda R. Healthcare costs of the combination of metformin/dipeptidyl peptidase-4 inhibitors compared with metformin/other oral antidiabetes agents in patients with type 2 diabetes and metabolic syndrome. Diabetes Technol Ther. 2014;16(11):722–7. https://doi.org/10.1089/dia.2014.0091.

    Article  CAS  PubMed  Google Scholar 

  133. Underland LJ, Ilkowitz JT, Katikaneni R, Dowd A, Heptulla RA. Use of Sitagliptin with closed-loop technology to decrease postprandial blood glucose in type 1 diabetes. J Diabetes Sci Technol. 2017;11(3):602–10. https://doi.org/10.1177/1932296817699847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Best C, Struthers H, Laciny E, Royal M, Reeds DN, Yarasheski KE. Sitagliptin reduces inflammation and chronic immune cell activation in HIV+ adults with impaired glucose tolerance. J Clin Endocrinol Metab. 2015;100(7):2621–9. https://doi.org/10.1210/jc.2015-1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. van Genugten RE, van Raalte DH, Muskiet MH, Heymans MW, Pouwels PJ, Ouwens DM, et al. Does dipeptidyl peptidase-4 inhibition prevent the diabetogenic effects of glucocorticoids in men with the metabolic syndrome? A randomized controlled trial. Eur J Endocrinol. 2014;170(3):429–39. https://doi.org/10.1530/eje-13-0610.

    Article  PubMed  Google Scholar 

  136. Fadini GP, de Kreutzenberg SV, Gjini R, Avogaro A. The metabolic syndrome influences the response to incretin-based therapies. Acta Diabetol. 2011;48(3):219–25. https://doi.org/10.1007/s00592-011-0296-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Vice Chancellor of the Mashhad University of Medical Sciences, Mashhad, Iran.

Contribution

MR and BMR collected data and drafted the manuscript. HH gave the idea, designed and supervised the study. HH and GAF edited the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rameshrad, M., Razavi, B.M., Ferns, G.A.A. et al. Pharmacology of dipeptidyl peptidase-4 inhibitors and its use in the management of metabolic syndrome: a comprehensive review on drug repositioning. DARU J Pharm Sci 27, 341–360 (2019). https://doi.org/10.1007/s40199-019-00238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00238-7

Keywords

Navigation