Skip to main content
Log in

Assessment of the mechanical properties of coronary arteries using intravascular ultrasound: an in vivo study

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

The pressure-area relation of coronary arteries provides important information about the mechanical properties of these vessels. In human subjects methodological limitations have precluded measurement of instantaneous compliance and coronary stress in vivo. The purpose of this study was to assess a new method for measuring instantaneous values of coronary artery compliance and wall stress utilizing simultaneously acquired pressure and intravascular ultrasound measurements of vessel area. Ten subjects with coronary artery disease had intravascular ultrasound studies of the proximal left anterior descending or circumflex coronary arteries. Coronary luminal area was measured with a 30-MHz (3F or 3.5F) intravascular ultrasound catheter and simultaneous coronary pressure measured with a 2F micromanometer-tipped catheter. Using this technique the nonlinear pressure-area relation and mean circumferential wall stress were determined over the physiological pressure range. Coronary artery compliance at 100 mmHg ranged from 0.010 to 0.052 mm2/mmHg (mean ± SD, 0.020 ± 0.012 mm2/mmHg). Peak systolic circumferential stress ranged from 0.52 to 2.03 × 106 dyn/cm2 (1.09 ± 0.42×106 dyn/cm2). This study describes a new method of determining coronary artery mechanical properties over the physiological pressure range. This technique may be useful in further studies of coronary artery mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirai T, Sasayama S, Kawasaki T, Yagi S. Stiffness of systemic arteries in patients with myocardial infarction: a noninvasive method to predict severity of coronary atherosclerosis. Circulation 1989; 80: 78-86.

    Google Scholar 

  2. Mohiaddin RH, Underwood SR, Bogren HG, Firmin DN, Klipstein RH, Rees RS, et al. Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br Heart J 1989; 62: 90-6.

    Google Scholar 

  3. Stefanadis C, Stratos C, Boudoulas H, Kourouklis C, Toutouzas P. Distensibility of the ascending aorta: comparison of invasive and non-invasive techniques in healthy men and in men with coronary artery disease. Eur Heart J 1990; 11: 990-6.

    Google Scholar 

  4. Dart AM, Lacombe F, Yeoh JK, Cameron JD, Jennings GL, Laufer E, et al. Aortic distensibility in patients with isolated hypercholesterolaemia, coronary artery disease, or cardiac transplant. Lancet 1991; 338: 270-3.

    Google Scholar 

  5. Tobis JM, Mallery J, Mahon D, Lehmann K, Zalesky P, Griffith J, et al. Intravascular ultrasound imaging of human coronary arteries in vivo: analysis of tissue characterizations with comparison to in vitro histological specimens. Circulation 1991; 83: 913-26.

    Google Scholar 

  6. Nissen SE, Gurley JC, Grines CL, Booth DC, McClure R, Berk M, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991; 84: 1087-99.

    Google Scholar 

  7. Alfonso F, Macaya C, Goicolea J, Hernandez R, Segovia J, Zamorano J, et al. Determinants of coronary compliance in patients with coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 1994; 23: 879-84.

    Google Scholar 

  8. Nakatani S, Yamagishi M, Tamai J, Goto Y, Umeno T, Kawaguchi A, et al. Assessment of coronary artery distensibility by intravascular ultrasound: application of simultaneous measurements of luminal area and pressure. Circulation 1995; 91: 2904-10.

    Google Scholar 

  9. Yamagishi M, Umeno T, Hongo Y, Tsutsui H, Goto Y, Nakatani S, et al. Intravascular ultrasonic evidence for importance of plaque distribution (eccentric vs circumferential) in determining distensibility of the left anterior descending artery. Am J Cardiol 1997; 79: 1596-600.

    Google Scholar 

  10. Fuster V. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1994; 90: 2126-46.

    Google Scholar 

  11. Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 1990; 81: 1575-85.

    Google Scholar 

  12. Carew TE, Vaishnav RN, Patel DJ. Compressibility of the arterial wall. Circ Res 1968; 23: 61-8.

    Google Scholar 

  13. Dobrin PB, Rovick AA. Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am J Physiol 1969; 217: 1644-51.

    Google Scholar 

  14. Langewouters GJ, Wesseling KH, Goedhard WJ. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 1984; 17: 425-35.

    Google Scholar 

  15. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-10.

    Google Scholar 

  16. Peterson LH, Jensen RE, Parnell J. Mechanical properties of arteries in vivo. Circ Res 1960; 8: 622-39.

    Google Scholar 

  17. Imura T, Yamamoto K, Satoh T, Kanamori K, Mikami T, Yasuda H. in vivo viscoelastic behavior in the human aorta. Circ Res 1990; 66: 1413-9.

    Google Scholar 

  18. Stefanadis C, Stratos C, Vlachopoulos C, Marakas S, Boudoulas H, Kallikazaros I, et al. Pressure-diameter relation of the human aorta: a new method of determination by the application of a special ultrasonic dimension catheter. Circulation 1995; 92: 2210-9.

    Google Scholar 

  19. Gow BS, Schonfeld D, Patel DJ. The dynamic elastic properties of the canine left circumflex coronary artery. J Biomech 1974; 7: 389-95.

    Google Scholar 

  20. Shimazu T, Hori M, Mishima M, Kitabatake A, Kodama K, Nanto S, et al. Clinical assessment of elastic properties of large coronary arteries: pressure-diameter relationship and dynamic incremental elastic modulus. Int J Cardiol 1986; 13: 27-45.

    Google Scholar 

  21. Barra JG, Armentano RL, Levenson J, Fischer EI, Pichel RH, Simon A. Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circ Res 1993; 73: 1040-50.

    Google Scholar 

  22. Armentano RL, Barra JG, Levenson J, Simon A, Pichel RH. Arterial wall mechanics in conscious dogs: assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ Res 1995; 76: 468-78.

    Google Scholar 

  23. Bank AJ, Wang HY, Holte JE, Mullen K, Shammas R, Kubo SH. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus. Circulation 1996; 94: 3263-70.

    Google Scholar 

  24. Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989; 2: 941-4.

    Google Scholar 

  25. Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992; 71: 850-8.

    Google Scholar 

  26. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation 1993; 87: 1179-87.

    Google Scholar 

  27. MacIsaac AI, Thomas JD, Topol EJ. Toward the quiescent coronary plaque. J Am Coll Cardiol 1993; 22: 1228-41.

    Google Scholar 

  28. Lee RT, Loree HM, Fishbein MC. High stress regions in saphenous vein bypass graft atherosclerotic lesions. J Am Coll Cardiol 1994; 24: 1639-44.

    Google Scholar 

  29. Rumberger JA, Jr., Nerem RM, Muir WW, III. Coronary artery pressure development and wave transmission characteristics in the horse. Cardiovasc Res 1979; 13: 413-9.

    Google Scholar 

  30. Gussenhoven EJ, Essed CE, Lancée CT, Mastik F, Frietman P, Van Egmond FC, et al. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol 1989; 14: 947-52.

    Google Scholar 

  31. Nishimura RA, Edwards WD, Warnes CA, Reeder GS, Holmes D, Jr., Tajik AJ, et al. Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol 1990; 16: 145-54.

    Google Scholar 

  32. Nissen SE, Grines CL, Gurley JC, Sublett K, Haynie D, Diaz C, et al. Application of a new phased-array ultrasound imaging catheter in the assessment of vascular dimensions: in vivo comparison to cineangiography. Circulation 1990; 81: 660-6.

    Google Scholar 

  33. Pandian NG, Kreis A, Brockway B, Isner JM, Sacharo. A, Boleza E, et al. Ultrasound angioscopy: real-time, two-dimensional, intraluminal ultrasound imaging of blood vessels. Am J Cardiol 1988; 62: 493-4.

    Google Scholar 

  34. Hodgson JM, Graham SP, Savakus AD, Dame SG, Stephens DN, Dhillon PS, et al. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging 1989; 4: 187-93.

    Google Scholar 

  35. Chae JS, Brisken AF, Maurer G, Siegel RJ. Geometric accuracy of intravascular ultrasound imaging. J Am Soc Echocardiogr 1992; 5: 577-87.

    Google Scholar 

  36. Arbab-Zadeh A, Penny WF, DeMaria AN, Bhargava V. Prevalence and extent of axial movement of intracoronary ultrasound transducer during the cardiac cycle [abstract]. Circulation 1996; 94suppl I: I-78.

    Google Scholar 

  37. Filardo SD, Chan M, Lee DP, Hon P, Kim C, Schwarzkopf A, et al. Normal coronary arteries do not taper in between branch vessels: an in vivo study [abstract]. J Am Coll Cardiol 1998; 31suppl A: 276A.

    Google Scholar 

  38. Kimura BJ, Bhargava V, Palinski W, Russo RJ, DeMaria AN. Distortion of intravascular ultrasound images because of nonuniform angular velocity of mechanical-type transducers. Am Heart J 1996; 132: 328-36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M.J., Stewart, R.A., Low, C.J. et al. Assessment of the mechanical properties of coronary arteries using intravascular ultrasound: an in vivo study. Int J Cardiovasc Imaging 15, 287–294 (1999). https://doi.org/10.1023/A:1006279228534

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006279228534

Navigation