Skip to main content
Log in

Fatty acid-binding proteins in the heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Long-chain fatty acids are important fuel molecules for the heart, their oxidation in mitochondria providing the bulk of energy required for cardiac functioning. The low solubility of fatty acids in aqueous solutions impairs their cellular transport. However, cardiac tissue contains several proteins capable of binding fatty acids non-covalently. These fatty acid-binding proteins (FABPs) are thought to facilitate both cellular uptake and intracellular transport of fatty acids. The majority of fatty acids taken up by the heart seems to pass the sarcolemma through a carrier-mediated translocation mechanism consisting of one or more membrane-associated FABPs. Intracellular transport of fatty acids towards sites of metabolic conversion is most likely accomplished by cytoplasmic FABPs. In this review, the roles of membrane-associated and cytoplasmic FABPs in cardiac fatty acid metabolism under (patho)physiological circumstances are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Van Der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS: Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72: 881–940, 1992

    Google Scholar 

  2. Tiruppathi C, Finnegan A, Malik AB: Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc Natl Acad Sci USA 93: 250–254, 1996

    Google Scholar 

  3. Bassingthwaighte JB, Noodleman L, Van Der Vusse GJ, Glatz JFC: Modelling of palmitate transport in the heart. Mol Cell Biochem 88: 51–58, 1989

    Google Scholar 

  4. Goresky CA, Stremmel W, Rose CP, Guirguis S, Schwab AJ, Diede HE, Ibrahim E: The capillary transport system for free fatty acids in the heart. Circ Res 74: 1015–1026, 1994

    Google Scholar 

  5. Zhang F, Kamp F, Hamilton JA: Dissociation of long and very long chain fatty acids from phospholipid bilayers. Biochemistry 35: 16055–16060, 1996

    Google Scholar 

  6. Higgins CF: Flip-flop: The transmembrane translocation of lipids. Cell 79: 393–395, 1994

    Google Scholar 

  7. Schaffer JE, Lodish HF: Molecular mechanism of long-chain fatty acid uptake. Trends Cardiovasc Med 5: 218–224, 1995

    Google Scholar 

  8. Van Nieuwenhoven FA, Verstijnen CPHJ, Van Eys GJJM, Van Breda E, De Jong YF, Van Der Vusse GJ, Glatz JFC: Fatty acid transfer across the myocardial capillary wall: No evidence of a substantial role for cytoplasmic fatty acid-binding protein. J Mol Cell Cardiol 26: 1635–1647, 1994

    Google Scholar 

  9. Kane CD, Coe NR, Vanlandingham B, Krieg P, Bernlohr DA: Expression, purification, and ligand-binding analysis of recombinant keratinocyte lipid-binding protein (MAL-1), an intracellular lipid-binding found overexpressed in neoplastic skin cells. Biochemistry 35: 2894–2900, 1996

    Google Scholar 

  10. Popov D, Hasu M, Ghinea N, Simionescu N, Simionescu M: Cardiomyocytes express albumin binding proteins. J Mol Cell Cardiol 24: 989–1002, 1992

    Google Scholar 

  11. Luiken JJFP, Van Nieuwenhoven FA, America G, Van Der Vusse GJ, Glatz JFC: Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins. J Lipid Res 38: 745–758, 1997

    Google Scholar 

  12. Glatz JFC, Luiken JJFP, Van Nieuwenhoven FA, Van Der Vusse GJ: Molecular mechanism of cellular uptake and intracellular translocation of fatty acids. Prostaglandins Leukot Essent Fatty Acids 57: 3–9, 1997

    Google Scholar 

  13. Glatz JFC, Van Der Vusse GJ: Cellular fatty acid-binding proteins: Their function and physiological significance. Prog Lipid Res 35: 243–282, 1996

    Google Scholar 

  14. Van Nieuwenhoven FA, Van Der Vusse GJ, Glatz JFC: Membraneassociated and cytoplasmic fatty acid-binding proteins. Lipids 31: S223–S227, 1996

    Google Scholar 

  15. Stump DD, Zhou SL, Berk PD: Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am J Physiol 265: G894–G902, 1993

    Google Scholar 

  16. Sorrentino D, Stump D, Potter BJ, Robinson RB, White R, Kiang CL, Berk PD: Oleate uptake by cardiac myocytes is carrier mediated and involves a 40 kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut. J Clin Invest 82: 928–935, 1988

    Google Scholar 

  17. Isola LM, Zhou SL, Kiang CL, Stump DD, Bradbury MW, Berk PD: 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake. Proc Natl Acad Sci USA 92: 9866–9870, 1995

    Google Scholar 

  18. Fujii S, Kawaguchi H, Yasuda H: Purification of high affinity fatty acid receptors in rat myocardial sarcolemmal membranes. Lipids 22: 544–546, 1987

    Google Scholar 

  19. Abumrad NA, El Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA: Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 268: 17665–17668, 1993

    Google Scholar 

  20. Ibrahimi A, Sfeir Z, Magharaie H, Amri EZ, Grimaldi P, Abumrad NA: Expression of the CD36 homolog (FAT) in fibroblast cells: Effects on fatty acid transport. Proc Natl Acad Sci USA 93: 2646–2651, 1996

    Google Scholar 

  21. Van Nieuwenhoven FA: Heart fatty acid-binding proteins – Role in cardiac fatty acid uptake and marker for cellular damage. PhD Thesis, Maastricht University, 1996

  22. Van Nieuwenhoven FA, Verstijnen CPHJ, Abumrad NA, Willemsen PHM, Van Eys GJJM, Van Der Vusse GJ, Glatz JFC: Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem Biophys Res Commun 207: 747–752, 1995

    Google Scholar 

  23. Schaffer JE, Lodish HF: Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436, 1994

    Google Scholar 

  24. Spitsberg VL, Matitashvili E, Gorewit RC: Association and coexpression of fatty-acid-binding protein and glycoprotein CD36 in the bovine mammary gland. Eur J Biochem 230: 872–878, 1995

    Google Scholar 

  25. Ockner RK, Manning JA, Poppenhausen RB, Ho WK: A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177: 56–58, 1972

    Google Scholar 

  26. Börchers T, Spener F: Fatty acid binding proteins. Current topics in membranes 40: 261–294, 1994

    Google Scholar 

  27. Veerkamp JH, Maatman RGHJ: Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res 34: 17–52, 1995

    Google Scholar 

  28. Flower DR: The lipocalin protein family: structure and function. Biochem J 318: 1–14, 1996

    Google Scholar 

  29. Siegenthaler G, Hotz R, Chatellard-Gruaz D, Didierjean L, Hellman U, Saurat JH: Purification and characterization of the human epidermal fatty acid-binding protein: Localization during epidermal cell differentiation in vivo and in vitro. Biochem J 302: 363–371, 1994

    Google Scholar 

  30. Fournier N, Geoffroy M, Deshusses J: Purification and characterization of a long chain, fatty-acid-binding protein supplying the mitochondrial β-oxidative system in the heart. Biochim Biophys Acta 533: 457–464, 1978

    Google Scholar 

  31. Glatz JFC, Baerwaldt CCF, Veerkamp JH: Diurnal variation of cytosolic fatty acid-binding protein content and of palmitate oxidation in rat liver and heart. J Biol Chem 259: 4295–4300, 1984

    Google Scholar 

  32. Said B, Schulz H: Fatty acid binding protein from rat heart. The fatty acid binding protein content and of palmitate oxidation in rat heart and liver are different proteins. J Biol Chem 259: 1155–1159, 1984

    Google Scholar 

  33. Glatz JFC, Paulussen RJA, Veerkamp JH: Fatty acid biding proteins from heart. Chem Physics Lipids 38: 115–12, 1985

    Google Scholar 

  34. Specht B, Bartetzko N, Hohoff C, Kuhl H, Franke R, Börchers T, Spener F: Mammary derived growth inhibitor is not a distinct protein but a mix of heart-type and adipocyte-type fatty acid-binding protein. J Biol Chem 271: 19943–19949, 1996

    Google Scholar 

  35. Haunerland NH: Fatty acid binding protein in locust and mammalian muscle. Comparison of structure, function and regulation. Comp Biochem Physiol 109B: 199–208, 1994

    Google Scholar 

  36. Londraville RL, Sidell BD: Purification and characterization of fatty acid-binding protein from aerobic muscle of the Antarctic icefish Chaenocephalus aceratus. J Exp Zool 273: 190–203, 1995

    Google Scholar 

  37. Bartetzko N, Lezius AG, Spener F: Isoforms of fatty-acid-binding protein in bovine heart are coded by distinct mRNA. Eur J Biochem 215: 555–559, 1993

    Google Scholar 

  38. Robers M, Loddenkotter B, Kresse H, Spener F: Effect of clofibric acid on the turnover of the fatty acid-binding protein identified in cultured endothelial cells from bovine aorta. Lipids 28: 483–486, 1993

    Google Scholar 

  39. Nielsen SU, Spener F: Fatty acid-binding protein from rat heart is phosphorylated on Tyr19 in response to insulin stimulation. J Lipid Res 34: 1355–1366, 1993

    Google Scholar 

  40. Banaszak L, Winter N, Xu Z, Bernlohr DA, Cowan S, Jones TA: Lipidbinding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem 45: 89–151, 1994

    Google Scholar 

  41. Young ACM, Scapin G, Kromminga A, Patel SB, Veerkamp JH, Sacchettini JC: Structural studies on human muscle fatty acid binding protein at 1.4 Å resolution: binding interactions with three C18 fatty acids. Structure 2: 523–534, 1994

    Google Scholar 

  42. Prinsen CFM, Veerkamp JH: Fatty acid binding and conformational stability of mutants of human muscle fatty acid-binding protein. Biochem J 314: 253–260, 1996

    Google Scholar 

  43. Richieri GV, Ogata RT, Kleinfeld AM: Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem 269: 23918–23930, 1994

    Google Scholar 

  44. Knudsen J, Mandrup S, Rasmussen JT, Andreasen PH, Poulsen F, Kristiansen K: The function of acyl-CoA-binding protein (ACBP)/ diazepam binding inhibitor (DBI). Mol Cell Biochem 123: 129–138, 1993

    Google Scholar 

  45. Phelan CM, Larsson C, Baird S, Futreal PA, Ruttledge MH, Morgan K, Tonin P, Hung H, Korneluk RG, Pollak MN, Narod SA: The human mammary-derived growth inhibitor (MGDI) gene: Genomic structure and mutation analysis in human breasts tumors. Genomics 34: 63–68, 1996

    Google Scholar 

  46. Treuner M, Kozak CA, Gallahan D, Grosse R, Müller T: Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor/heart-fatty acid-binding protein. Gene 147: 237–242, 1994

    Google Scholar 

  47. Chen CY, Shyu AB: AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20: 465–470, 1995

    Google Scholar 

  48. Vork MM, Glatz JFC, Surtel DAM, Knubben HJM, Van Der Vusse GJ: A sandwich enzyme linked immuno-sorbent assay for the determination of rat heart fatty acid-binding protein using the streptavidin-biotin system. Application to tissue and effluent samples from normoxic rat heart perfusion. Biochim Biophys Acta 1075: 199–205, 1991

    Google Scholar 

  49. Linssen MC, Vork MM, De Jong YF, Glatz JFC, Van Der Vusse GJ: Fatty acid oxidation capacity and fatty acid-binding protein content of different cell types isolated from rat heart. Mol Cell Biochem 98: 19–25, 1990

    Google Scholar 

  50. Kleine AH, Glatz JFC, Havenith MG, Van Nieuwenhoven FA, Van Der Vusse GJ, Bosman FT: Immunohistochemical detection of very recent myocardial infarctions in man with antibodies against heart type fatty acid-binding protein. Cardiovasc Pathol 2: 63–69, 1993

    Google Scholar 

  51. Heuckeroth RO, Birkenmeier EH, Levin MS, Gordon JI: Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J Biol Chem 262: 9709–9717, 1987

    Google Scholar 

  52. Van Breda E, Keizer HA, Vork MM, Surtel DA, De Jong YF, Van Der Vusse GJ, Glatz JFC: Modulation of fatty-acid-binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Pflügers Arch 421: 274–279, 1992

    Google Scholar 

  53. Garnier A, Poizat C, Keriel C, Cuchet P, Vork MM, De Jong YF, Glatz JFC: Modulation of fatty acid-binding protein content of adult rat heart in response to chronic changes in plasma lipid levels. Mol Cell Biochem 123: 107–112, 1993

    Google Scholar 

  54. Glatz JFC, Börchers T, Spener F, Van Der Vusse GJ: Fatty acids in cell signalling: Modulation by lipid binding proteins. Prostaglandins Leukot Essent Fatty Acids 52: 121–127, 1995

    Google Scholar 

  55. Murphy EJ, Prows DR, Jefferson JR, Schroeder F: Liver fatty acidbinding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Biochim Biophys Acta 1301: 191–198, 1996

    Google Scholar 

  56. Stewart JM, Driedzic WR, Berkelaar JAM: Fatty-acid-binding protein facilitates the diffusion of oleate in a model cytosol system. Biochem J 275: 569–573, 1991

    Google Scholar 

  57. Vork MM, Glatz JFC, Van Der Vusse GJ: On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein. J Theor Biol 160: 207–222, 1993

    Google Scholar 

  58. Wootan MG, Storch J: Regulation of fluorescent fatty acid transfer from adipocyte and heart fatty acid binding proteins by acceptor membrane lipid composition and structure. J Biol Chem 269: 10517–10523, 1994

    Google Scholar 

  59. Zanotti G, Feltre L, Spadon P: A possible route for the release of fatty acid from fatty acid-binding protein. Biochem J 301: 459–463, 1994

    Google Scholar 

  60. Herr FM, Aronson J, Storch J: Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes. Biochemistry 35: 1296–1303, 1996

    Google Scholar 

  61. Böhmer FD, Kraft R, Otto A, Wernstedt C, Hellman U, Kurtz A, Müller T, Rohde K, Etzold G, Lehmann W, Langen P, Heldin CH, Grosse R: Identification of a polypeptide growth inhibitor from bovine mammary gland. Sequence homology to fatty acid-and retinoid-binding proteins. J Biol Chem 262: 15137–15143, 1987

    Google Scholar 

  62. Yang Y, Spitzer E, Kenney N, Zschiesche W, Li M, Kromminga A, Müller T, Spener F, Lezius A, Veerkamp JH, Smith GH, Salomon DS, Grosse R: Members of the fatty acid binding protein family are differentiation factors for the mammary gland. J Cell Biol 127: 1097–1109, 1994

    Google Scholar 

  63. Burton PB, Hogben CE, Joannou CL, Clark AGB, Hsuan JJ, Totty NF, Sorensen C, Evans RW, Tynan MJ: Heart fatty acid binding protein is a novel regulator of cardiac myocyte hypertrophy. Biochem Biophys Res Commun 205: 1822–1828, 1994

    Google Scholar 

  64. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO: Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213: 263–276, 1994

    Google Scholar 

  65. Glatz JFC, Van Breda E, Keizer HA, De Jong YF, Lakey JRT, Rajotte RV, Thompson A, Van Der Vusse GJ, Lopaschuk GD: Rat heart fatty acid-binding protein content is increased in experimental diabetes. Biochem Biophys Res Commun 199: 639–646, 1994

    Google Scholar 

  66. Carey JO, Neufer PD, Farrar RP, Veerkamp JH, Dohm GL: Transcriptional regulation of muscle fatty acid-binding protein. Biochem J 298: 613–617, 1994

    Google Scholar 

  67. Wojtczak L, Schonfeld P: Effect of fatty acids on energy coupling processes in mitochondria. Biochim Biophys Acta 1183: 41–57, 1993

    Google Scholar 

  68. Van Nieuwenhoven FA, Kleine AH, Wodzig WH, Hermens WT, Kragten HA, Maessen JG, Punt CD, Van Dieijen MP, Van Der Vusse GJ, Glatz JFC: Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation 92: 2848–2854, 1995

    Google Scholar 

  69. Vork MM, Trigault N, Snoeckx LHEH, Glatz JFC, Van Der Vusse GJ: Heterogeneous distribution of fatty acid-binding protein in the hearts of Wistar Kyoto and spontaneously hypertensive rats. J Mol Cell Cardiol 24: 317–321, 1992

    Google Scholar 

  70. Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM: Uncoupling of obesity from insulin resistance through a targetted mutation in aP2, the adipocyte fatty acid binding protein. Science 274: 1377–1379, 1996

    Google Scholar 

  71. Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, LeMeur M, Chambon P: Mice deficient in cellular retinoic acid binding protein II (CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121: 539–548, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaap, F.G., van der Vusse, G.J. & Glatz, J.F. Fatty acid-binding proteins in the heart. Mol Cell Biochem 180, 43–51 (1998). https://doi.org/10.1023/A:1006878621126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006878621126

Navigation