Skip to main content
Log in

Arteriogenesis, a new concept of vascular adaptation in occlusive disease

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The formation of collateral arteries as a process adaptive to arterial occlusion is now called ‘arteriogenesis’ to emphasize the difference to angiogenesis, the formation of capillaries by sprouting from pre-existent ones (W. Schaper, I. Buschmann. Cardiovasc Res 1999; 43: 835–7; I. Buschmann, W. Schaper. J Pathol 2000; 190: 338–42; D. Scholz et al. Virchows Arch 2000; 436: 257–70). The differences are that collaterals develop from pre-existing arterioles and that circulating monocytes adhere to endothelium that had been activated by the high shear stress generated by the large pressure differences between perfusion territories. Monocytes are the major producers of growth factors and of proteolytic enzymes that enable smooth muscle cells to migrate and divide. The nature of the growth factors remains uncertain. Neither FGF-1/2 nor VEGF is expressed on the transcriptional or translational level in collaterals proper and in the tissue surrounding them. Only FGF receptor 1 has a brief window of upregulation shortly after arterial occlusion. While transgenic overexpression of FGF-1 increases number and branching of arterioles, targeted disruption of FGF-1/2 does not negatively influence arteriogenesis. Cytokines that attract monocytes or prolong the life span of monocytes (MCP-1, GM CSF) are strong arteriogenic factors. Collateral vessels exhibit the same morphology whether they had formed in the heart, limbs or brain or in dogs, rabbits or mouse. They are tortuous because they also increase lengthwise in a restricted space. In animals larger than the mouse, they develop an intima, and initially, many arterioles participate in arteriogenesis, but only a few mature into large arterial channels which, when arterial occlusion had proceeded slowly enough, can replace the occluded artery to a significant proportion. Therapy with a single growth factor in animals with occluded femoral arteries significantly increases the speed of arteriogenesis but does not significantly increase the level of adaptation. It appears that the mastergene for arteriogenesis still awaits discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schaper W. The Collateral Circulation of the Heart. Amsterdam, London: Elsevier/North Holland Publishing Company 1971.

    Google Scholar 

  2. Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671–4.

    Article  PubMed  CAS  Google Scholar 

  3. Ware JA, Simons M. Angiogenesis in ischemic heart disease. Nature Med 1997; 3: 158–64.

    Article  PubMed  CAS  Google Scholar 

  4. Schaper W, DeBrabander M, Lewi P. DNA-synthesis and mitoses in coronarycollateral vessels of the dog. Circ Res 1971; 28: 671–9.

    PubMed  CAS  Google Scholar 

  5. Flameng W, Schwarz F, Schaper W. Coronarycollater als: Development and functional significance. Am J Cardiol 1978; 41: 364 (Abstr).

    Article  Google Scholar 

  6. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Med 2000; 6: 389–95.

    Article  PubMed  CAS  Google Scholar 

  7. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxiainducible Factor 1. J Biol Chem 1994; 269: 23757–63.

    PubMed  CAS  Google Scholar 

  8. Schaper W, Piek JJ, Munoz-Chapuli R et al. Collateral circulation of the heart. In Ware JA, Simons M (eds): Angiogenesis and Cardiovascular Disease, Oxford: Oxford UniversityPress 1999; pp. 159–98.

  9. Petterson A, NagyJA, Brown LF et al. Heterogeneityof the angiogenic response induced in different normal tissues byvascular permeabilityfactor/vascu lar endothelial growth factor. Lab Invest 2000; 80: 99–115.

    Google Scholar 

  10. Carmeliet P. Clotting factors build blood vessels. Science 2001; 293: 1602–4.

    Article  PubMed  CAS  Google Scholar 

  11. Schaper W. The Pathophysiology of Myocardial Perfusion. Amsterdam/New York/Oxford: Elsevier/North-Holland Biomedical Press 1979.

    Google Scholar 

  12. Yang HT, Deschenes MR, Ogilvie RW, Terjung RL. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ Res 1996; 79: 62–9.

    PubMed  CAS  Google Scholar 

  13. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeabilityfactor/vascu lar endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146: 1029–39.

    PubMed  CAS  Google Scholar 

  14. Schaper W. Experimental infarcts and the microcirculation. In Hearse DJ, Yellon DM (eds): Therapeutic Approaches to Myocardial Infarct Size Limitation, New York: Raven Press 1984; 79–90.

    Google Scholar 

  15. White FC, Roth DM, McKirnanD et al. Exercise induced coronary collateral development: A comparison to other models of myocardial angiogenesis. In Schaper W and Schaper J (eds): Collateral Circulation - Heart, Brain, Kidney, Limbs. Boston, Dordrecht/ London: Kluwer Academic Publishers 1992; 261–89.

    Google Scholar 

  16. Fallavollita JA, Jacob S, Young RF, CantyJM. Regional alterations in SR Ca2+-ATPase, phospholamban, and HSP-70 expression in chronic hibernating myocardium. Am J Physiol (Heart) 1999; 277: H1418–28.

    Google Scholar 

  17. Elsässer A, Schlepper M, Klövekorn W-P et al. Hibernating myocardium - an incomplete adaptation to ischemia. Circulation 1997; 96: 2920–31.

    PubMed  Google Scholar 

  18. Scholz D, Ito W, Fleming I et al. Ultrastructure and molecular histologyof rabbit hind-limb collateral arterygrowth (arteriogenesis). Virchows Arch 2000; 436: 257–70.

    Article  PubMed  CAS  Google Scholar 

  19. Fernandez B, Bühler A, Wolfram S et al. Fibroblast growth factor-1 overexpression causes coronaryartery overgrowth in transgenic mice. FASEB J 2000; 14: 192.2 (Abstr).

    Google Scholar 

  20. Pasyk S, Schaper W, Schaper J et al. DNA synthesis in coronary collaterals after coronaryarteryocclusion in conscious dog. Am J Physiol 1982; 242: H1031–7.

    PubMed  CAS  Google Scholar 

  21. Schaper J, Borgers M, Schaper W. Ultrastructure of ischemiainduced changes in the precapillaryanastomo tic network of the heart. Am J Cardiol 1972; 29: 851–9.

    Article  PubMed  CAS  Google Scholar 

  22. Arras M, Ito WD, Scholz D et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 1998; 101: 41–50.

    Article  Google Scholar 

  23. Schaper J, Koenig R, Franz D, Schaper W. The endothelial surface of growing coronarycollateral arteries. Intimal margination and diapedesis of monocytes. A combined SEM and TEM study. Virchows Arch A (Pathol Anat) 1976; 370: 193–205.

    Article  CAS  Google Scholar 

  24. Voets T, Szücs G, Droogmans G, Nilius B. Blockers of volumeactivated Cl)-currents inhibit endothelial cell proliferation. Pflü-gers Arch Eur J Physiol 1995; 431: 132–4.

    Article  CAS  Google Scholar 

  25. Deindl E, Fernandez B, Höfer IE et al. Arteriogenesis, collateral blood vessels, and their development. In Rubanyi GM (ed): Angiogenesis in Health and Disease. New York/Basel: Marcel Dekker 1999; 31–46.

    Google Scholar 

  26. Cai W-J, Koltai S, Kocsis E et al. Connexin37, not Cx40 and Cx43, is induced in vascular smooth muscle cells during coronary arteriogenesis. J Mol Cell Cardiol 2001; 33: 957–67.

    Article  PubMed  CAS  Google Scholar 

  27. Cai WJ, Vosschulte R, Afsah-Hedrij A et al. Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronaryarteriog enesis. J Mol Cell Cardiol 2000; 32: 997–1011.

    Article  PubMed  CAS  Google Scholar 

  28. Wolf C, Cai WJ, Vosschulte R et al. Vascular remodelling and altered protein expression during growth of coronarycollateral arteries. J Mol Cell Cardiol 1998; 30: 2291–305.

    Article  PubMed  CAS  Google Scholar 

  29. Bruzzone R, White TW, Paul DL. Connection with connexins: the molecular basis of intercellular signalling. Eur J Biochem 1996; 238: 1–27.

    Article  PubMed  CAS  Google Scholar 

  30. Schaper W, Flameng W, Winkler B et al. Quantification of collateral resistance in acute and chronic experimental coronary occlusion in the dog. Circ Res 1976; 39: 371–7.

    PubMed  CAS  Google Scholar 

  31. Unger EF, Banai S, Shou M et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 1994; 266: H1588–95.

    Google Scholar 

  32. Kumada T, Gallagher KP, Battler A et al. Comparison of postpacing and exercise-induced myocardial dysfunction during collateral development in conscious dogs. Circulation 1982; 65: 1178–85.

    PubMed  CAS  Google Scholar 

  33. Ito WD, Arras M, Winkler B et al. Angiogenesis but not collateral growth is associated with ischemia after femoral arteryocclusion. Am J Physiol 1997; 273: H1255–65.

    PubMed  CAS  Google Scholar 

  34. Elsässer H, Sauer A, Friedrich C et al. Bone marrow transplants abolish inhibition of arteriogenesis in placenta growth factor k.o. mice. J Mol Cell Cardiol 2000; 32: C2 (Abstr).

    Google Scholar 

  35. Miller DL, Ortega S, Bashayan O et al. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 2000; 20: 2260–68.

    Article  PubMed  CAS  Google Scholar 

  36. Vosschulte R, Cai WJ, Koltai S et al. Extracellular proteolysis is essential for coronaryarteriogen esis. J Mol Cell Cardiol 1998; 30 (Suppl): 159 (Abstr).

    Google Scholar 

  37. Ito WD, Arras M, Winkler B et al. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral arteryocclusion. Circ Res 1997; 80: 829–37.

    PubMed  CAS  Google Scholar 

  38. Deindl E, Neubauer E, Fernandez B et al. Collateral arterygrowth in rabbit is not dependent on ischemia or an increased expression of VEGF. Circulation 2000; 102 (Suppl): 237 (Abstr).

    Google Scholar 

  39. Polverini PJ, Cotran RS, Gimbrone MA, Unanue EM. Activated macrophages induce vascular proliferation. Nature 1977; 269: 804–6.

    Article  PubMed  CAS  Google Scholar 

  40. Buschmann I, Hoefer I, Heil M, Schaper W. Anti-adhesion monoclonal antibodies against ICAM inhibit arteriogenesis. JACC 1999; 33 (Suppl A): 911–1 (Abstr).

    Google Scholar 

  41. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–7.

    Article  PubMed  CAS  Google Scholar 

  42. Risau W. Differentiation of endothelium. FASEB J 1995; 9: 926–33.

    PubMed  CAS  Google Scholar 

  43. Wezler K, Sinn W. (eds) Das Strömungsgesetz des Blutkreislaufes. Aulendorf: Edition Kantor KG 1953.

  44. Schaper W. Tangential wall stress as a molding force in the development of collateral vessels in the canine heart. Experientia (Basel) 1967; 23: 595–8.

    CAS  Google Scholar 

  45. Scheel KW, Fitzgerald EM, Martin RO, Larsen RA. The possible role of mechanical stresses on coronarycollateral development during gradual coronaryocclusion - a simulation study. In Schaper W (ed): The Pathophysiology of Myocardial Perfusion. Amsterdam, New York/Oxford: Elsevier/North-Holland Biomedical Press 1979; pp. 489–518.

    Google Scholar 

  46. Schaper W, Buschmann I. Arteriogenesis, the good and bad of it. Cardiovasc Res 1999; 43: 835–7.

    Article  PubMed  CAS  Google Scholar 

  47. Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). J Pathol 2000; 190: 338–42.

    Article  PubMed  CAS  Google Scholar 

  48. Diendl E, Buschmann I, Hoefer IE et al. Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 2001; 89: 779–86.

    Google Scholar 

  49. Schwartz MS. The intima-a new soil. Circ Res 1999; 85: 877–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, D., Cai, Wj. & Schaper, W. Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 4, 247–257 (2001). https://doi.org/10.1023/A:1016094004084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016094004084

Navigation