Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice

Abstract

Oxidative modification of low density lipoprotein (LDL) has been implicated in atherogenesis 1 . Evidence consistent with this hypothesis includes the presence of oxidized lipids in atherosclerotic lesions 2, 3 , the newly discovered biological properties conferred on LDL by oxidation 1, 4 and the acceleration of atherogenesis by in vivo delivery of the gene for 15-lipoxygenase 5 , an oxidizing enzyme present in atherosclerotic lesions 6 . However, it is still unknown whether oxidative stress actually coincides with the evolution of the disease or whether it is of functional relevance to atherogenesis in vivo . Isoprostanes are products of arachidonic acid catalyzed by free radicals, which reflect oxidative stress and lipid peroxidation in vivo 7 . Elevation of tissue and urinary isoprostanes is characteristic of human atherosclerosis 8, 9 . Here, deficiency in apolipoprotein E in the mouse (apoE –/– ) resulted in atherogenesis and an increase in iPF -VI, an F 2 -isoprostane 10 , in urine, plasma and vascular tissue. Supplementation with vitamin E significantly reduced isoprostane generation, but had no effect on plasma cholesterol levels in apoE –/– mice. Aortic lesion areas and iPF -VI levels in the arterial wall were also reduced significantly by vitamin E. Our results indicate that oxidative stress is increased in the apoE –/– mouse, is of functional importance in the evolution of atherosclerosis and can be suppressed by oral administration of vitamin E.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time course of iPF-VI urinary excretion (a) and plasma levels (b) in apoE–/– mice fed normal chow (▪) or chow supplemented with vitamin E (2000 I.
Figure 2: Plasma vitamin E concentration (a), total plasma cholesterol (b) and triglyceride levels (c) in apoE–/– mice fed normal chow (▪) or chow supplemented with vitamin E (2000 I.
Figure 3: Correlations between plasma vitamin E and urinary (a; r = 0.
Figure 4: Tissue levels of IPF-VI (a) and percent of total aortic lesion areas (b) in apoE–/– mice fed normal chow (Control; n = 8) or chow supplemented with vitamin E (Vitamin E; (n = 11).

Similar content being viewed by others

References

  1. Steinberg, D. Oxidative modification of LDL and atherogenesis. Circulation 95, 1062–1071 (1997).

    Article  CAS  Google Scholar 

  2. Haberland, M.E., Fong, D. & Cheng, L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241, 215– 218 (1988).

    Article  CAS  Google Scholar 

  3. Palinski, W. et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl. Acad. Sci. USA 86, 1372–1376 (1989).

    Article  CAS  Google Scholar 

  4. Navab, M. et al. The Yin and Yan of oxidation in the development of the fatty streak. Arterioscl. Thromb. Vasc. Biol. 16, 831–842 (1996).

    Article  CAS  Google Scholar 

  5. Kuhn, H., Belkner, J., Zaiss, S., Fahrenklemper, T. & Wohlfeil, S. Involvement of 15-lipoxygenase in early stages of atherogenesis. J. Exp. Med. 179, 1911– 1994 (1994).

    Article  Google Scholar 

  6. Ylä-Herttuala, S. et al. Co-localization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 87, 6959–6963 (1987).

    Article  Google Scholar 

  7. Patrono, C. & FitzGerald, G.A. Isoprostanes: Potential markers of oxidant stress in atherothrombotic disease. Arterioscl. Thromb. Vasc. Biol. 17, 2309–2315 (1997).

    Article  CAS  Google Scholar 

  8. Praticò, D. et al. Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J. Clin. Invest. 100 , 2027–2034 (1997).

    Article  Google Scholar 

  9. Davi, G. et al. In vivo formation of 8-epi-Prostaglandin F2α is increased in hypercholesterolemia. Arterioscl. Thromb. Vasc. Biol. 17, 3230–3235 ( 1997).

    Article  CAS  Google Scholar 

  10. Rokach, J. et al. Nomenclature of Isoprostanes: a proposal. Prostaglandins 54, 853–873 ( 1997).

    Article  CAS  Google Scholar 

  11. Steinberg D.> Clinical trials of antioxidants and atherosclerosis : are we doing the right thing? Lancet 346, 36–38 (1995).

    Article  CAS  Google Scholar 

  12. Gutteridge, J.M.C. & Halliwell, B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 15, 129–1365 (1990).

    Article  CAS  Google Scholar 

  13. Fruebis, J., Bird, D.A., Pattison, J. & Palinski, W. Extent of antioxidant protection of plasma LDL is not a predictor of the antiatherogenic effect of antioxidants. J. Lipid Res. 38, 2455– 2464 (1997).

    CAS  PubMed  Google Scholar 

  14. Tangirala, R.K. et al. Effect of the antioxidant N,Ń-Diphenyl 1,4-Phenylenediamine (DPPD) on atherosclerosis in apoE-deficient mice. Arterioscl. Thromb. Vasc. Biol. 15, 1625–1630 (1995).

    Article  CAS  Google Scholar 

  15. Santanam, M. & Parthasarathy, S. Paradoxical actions of antioxidants in the oxidation of low density lipoprotein by peroxidases. J. Clin. Invest. 95, 2594–2600 (1995).

    Article  CAS  Google Scholar 

  16. Zhang, S.H. et al. Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice. J. Clin. Invest. 99, 2858–2866 (1997).

    Article  CAS  Google Scholar 

  17. Bird, D.A. et al. Effect of probucol on LDL oxidation and atherosclerosis in LDL receptor-deficient mice. J. Lipid Res. 39, 1079–1090 (1998).

    CAS  PubMed  Google Scholar 

  18. Fruebis, J., Carew, T.E. & Palinski, W. Effect of vitamin E on atherogenesis in LDL receptor-deficient rabbits. Atherosclerosis 117, 617– 626 (1995).

    Article  Google Scholar 

  19. Hayek, T. et al. Probucol decreases apolipoprotein A-1 transport rate and increases high density lipoprotein cholesteryl ester fractional catabolic rate in control and human apolipoprotein a-I transgenic mice. Atheroscler. Thromb. 11: 1295–1302 ( 1991).

    CAS  Google Scholar 

  20. Praticò, D., Reilly, M., Lawson, J.A. & FitzGerald, G.A. Novel indices of oxidant stress in cardiovascular disease: specific analysis of F2 -isoprostanes. Agents Actions 48, 26–41 (1997).

    Google Scholar 

  21. Praticò, D. et al. IPF2α-I: A novel index of lipid peroxidation in humans. Proc. Natl. Acad. Sci. USA 95, 3449–3454 (1998).

    Article  Google Scholar 

  22. Plump, A.S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 ( 1992).

    Article  CAS  Google Scholar 

  23. Zhang, S.H., Reddick, R.L., Piedrahita, J.A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).

    Article  CAS  Google Scholar 

  24. Palinski, W. et al. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscl. Thromb. Vasc. Biol. 14, 605– 616 (1994).

    Article  CAS  Google Scholar 

  25. Tangirala, R.K., Rubin, E.M. & Palinski, W. Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J. Lipid Res. 36, 2320 –2328 (1995).

    CAS  PubMed  Google Scholar 

  26. Reilly, M. et al. Increased generation of distinct F2 isoprostanes in hypercholesterolemia. Circulation (in the press).

  27. Praticò, D. et al. Increased lipid peroxidation in hepatic cirrhosis. J. Investig. Med. 46, 51–57 (1998).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Smith for technical assistance. This work was supported by grants from the American Heart Association (Grants-in-Aid from the Southeast Pennsylvania Affliate and the National Association), the NIH (HL,AG55323, HL5400 and DK-44730), the NSF for an AMX-360 NMR Instrument (Grant CHE-9013145) and from the W.W. Smith Charitable Trust. G.A.F. is the Robinette Foundation Professor of Cardiovascular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garret A. FitzGerald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praticò, D., Tangirala, R., Rader, D. et al. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat Med 4, 1189–1192 (1998). https://doi.org/10.1038/2685

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing