Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Thrombin signalling and protease-activated receptors

Abstract

How does the coagulation protease thrombin regulate cellular behaviour? The protease-activated receptors (PARs) provide one answer. In concert with the coagulation cascade, these receptors provide an elegant mechanism linking mechanical information in the form of tissue injury or vascular leakage to cellular responses. Roles for PARs are beginning to emerge in haemostasis and thrombosis, inflammation, and perhaps even blood vessel development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The actions of thrombin on blood cells and blood vessels.
Figure 2: Mechanism of PAR1 activation.
Figure 3: Thrombin signalling in human and mouse platelets.

Similar content being viewed by others

References

  1. Colman, R. W., Marder, V. J., Salzman, E. W. & Hirsh, J. in Hemostasis and Thrombosis (eds Colman, R. W., Marder, V. J., Salzman, E. W. & Hirsh, J.) 3–18 (Lippincott, Philadelphia, 1994).

    Google Scholar 

  2. Esmon, C. T. et al. Inflammation, sepsis, and coagulation. Haematologica 84, 254–259 ( 1999).

    CAS  PubMed  Google Scholar 

  3. Osterud, B. Tissue factor expression by monocytes: regulation and pathophysiological roles . Blood Coag. Fibrin. 9(Suppl. 1), S9–S14 (1998).

    CAS  Google Scholar 

  4. Giesen, P. L. et al. Blood-borne tissue factor: another view of thrombosis. Proc. Natl Acad. Sci. USA 96, 2311– 2315 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Bevilacqua, M. P. & Gimbrone, M. A. Jr Inducible endothelial functions in inflammation and coagulation. Semin. Thromb. Hemost. 13, 425–433 (1987).

    Article  CAS  Google Scholar 

  6. Coughlin, S. R. Sol Sherry lecture in thrombosis: how thrombin ‘talks’ to cells: molecular mechanisms and roles in vivo. Arterioscl. Thromb. Vasc. Biol. 18, 514–518 (1998).

    Article  CAS  Google Scholar 

  7. Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V. & Bainton, D. F. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J. Cell Biol. 101, 880–886 (1985).

    Article  CAS  Google Scholar 

  8. Henn, V. et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 391, 591– 594 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Hughes, P. E. & Pfaff, M. Integrin affinity modulation. Trends Cell Biol. 8, 359–364 (1998).

    Article  CAS  Google Scholar 

  10. Sims, P. J., Wiedmer, T., Esmon, C. T., Weiss, H. J. & Shattil, S. J. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. J. Biol. Chem. 264, 17049–17057 (1989).

    CAS  PubMed  Google Scholar 

  11. Hattori, R., Hamilton, K. K., Fugate, R. D., McEver, R. P. & Sims, P. J. Stimulated secretion of endothelial vWF is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J. Biol. Chem. 264 , 7768–7771 (1989).

    CAS  PubMed  Google Scholar 

  12. Subramaniam, M. et al. Defects in hemostasis in P-selectin-deficient mice. Blood 87, 1238–1242 ( 1996).

    CAS  PubMed  Google Scholar 

  13. Frenette, P. S., Mayadas, T. N., Rayburn, H., Hynes, R. O. & Wagner, D. D. Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 84, 563–574 ( 1996).

    Article  CAS  Google Scholar 

  14. Lum, H. & Malik, A. B. Regulation of vascular endothelial barrier function. Am. J. Physiol. 267, L223 –L241 (1994).

    CAS  PubMed  Google Scholar 

  15. Cirino, G. et al. Thrombin functions as an inflammatory mediator through activation of its receptor. J. Exp. Med. 183, 821– 827 (1996).

    Article  CAS  Google Scholar 

  16. Coughlin, S. R. How the protease thrombin talks to cells. Proc. Natl Acad. Sci. USA 96, 11023–11027 ( 1999).

    Article  ADS  CAS  Google Scholar 

  17. Vu, T.-K. H., Hung, D. T., Wheaton, V. I. & Coughlin, S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991).

    Article  CAS  Google Scholar 

  18. Rasmussen, U. B. et al. cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett. 288, 123–128 (1991).

    Article  CAS  Google Scholar 

  19. Chen, J., Ishii, M., Wang, L., Ishii, K. & Coughlin, S. R. Thrombin receptor activation: confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J. Biol. Chem. 269, 16041–16045 (1994).

    CAS  PubMed  Google Scholar 

  20. O'Brien, P. J. et al. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J. Biol. Chem. 275, 13502– 13509 (2000).

    Article  CAS  Google Scholar 

  21. Ishii, K., Hein, L., Kobilka, B. & Coughlin, S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J. Biol. Chem. 268, 9780–9786 (1993).

    CAS  PubMed  Google Scholar 

  22. Bernatowicz, M. S. et al. Development of potent thrombin receptor antagonist peptides . J. Med. Chem. 39, 4879– 4887 (1996).

    Article  CAS  Google Scholar 

  23. Ishihara, H. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502– 506 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Xu, W. F. et al. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95, 6642– 6646 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Kahn, M. L. et al. A dual thrombin receptor system for platelet activation. Nature 394, 690–694 ( 1998).

    Article  ADS  CAS  Google Scholar 

  26. Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. Molecular cloning of a potential novel proteinase activated receptor. Proc. Natl Acad. Sci. USA 91, 9208– 9212 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Molino, M. et al. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J. Biol. Chem. 272, 4043– 4049 (1997).

    Article  CAS  Google Scholar 

  28. Camerer, E., Huang, W. & Coughlin, S. R. Tissue factor- and Factor X-dependent activation of PAR2 by Factor VIIa. Proc. Natl Acad. Sci. USA 97 , 5255–5260 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Nakanishi-Matsui, M. et al. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404, 609–613 ( 2000).

    Article  ADS  CAS  Google Scholar 

  30. Kahn, M. L., Nakanishi-Matsui, M., Shapiro, M. J., Ishihara, H. & Coughlin, S. R. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J. Clin. Invest. 103, 879–887 ( 1999).

    Article  CAS  Google Scholar 

  31. Hung, D. T., Vu, T. K., Wheaton, V. I., Ishii, K. & Coughlin, S. R. Cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. J. Clin. Invest. 89, 1350–1353 ( 1992).

    Article  CAS  Google Scholar 

  32. Brass, L. F. et al. Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J. Biol. Chem. 267, 13795–13798 (1992).

    CAS  PubMed  Google Scholar 

  33. Selak, M. A., Chignard, M. & Smith, J. B. Cathepsin G is a strong platelet agonist released by neutrophils. Biochem. J. 251, 293– 299 (1988).

    Article  CAS  Google Scholar 

  34. Sambrano, G. R. et al. Cathepsin G activates protease-activated receptor-4 in human platelets. J. Biol. Chem. 275, 6819– 6823 (2000).

    Article  CAS  Google Scholar 

  35. Shapiro, M. J., Weiss, E. J., Faruqi, T. R. & Coughlin, S. R. Protease-activated receptors 1 and 4 are shutoff with distinct tempos after activation by thrombin. J. Biol. Chem. (in the press).

  36. Okamura, T., Hasitz, M. & Jamieson, G. A. Platelet glycocalicin: interaction with thrombin and role as thrombin receptor on the platelet surface. J. Biol. Chem. 253, 3435–3443 ( 1978).

    Google Scholar 

  37. Andrews, R. K. et al. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb. Haemost. 82, 357– 364 (1999).

    Article  CAS  Google Scholar 

  38. Connolly, T. M. et al. Species variability in platelet and other cellular responsiveness to thrombin receptor-derived peptides. Thromb. Haemost. 72, 627–633 (1994).

    Article  CAS  Google Scholar 

  39. Derian, C. K., Santulli, R. J., Tomko, K. A., Haertlein, B. J. & Andrade-Gordon, P. Species differences in platelet responses to thrombin and SFLLRN. Receptor-mediated calcium mobilization and aggregation and regulation by protein kinases. Thromb. Res. 6, 505–519 (1995).

    Article  Google Scholar 

  40. Connolly, A. J., Ishihara, H., Kahn, M. L., Farese, R. V. & Coughlin, S. R. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381, 516–519 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Zimmerman, G. A. et al. Platelet-activating factor (PAF): signalling and adhesion in cell-cell interactions. Adv. Exp. Med. Biol. 416 , 297–304 (1996).

    Article  CAS  Google Scholar 

  42. Johnson, K. et al. Potential mechanisms for a proinflammatory vascular cytokine response to coagulation activation. J. Immunol. 160 , 5130–5135 (1998).

    CAS  PubMed  Google Scholar 

  43. Cunningham, M. A. et al. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J. Exp. Med. 191, 455–462 (2000).

    Article  CAS  Google Scholar 

  44. Bugge, T. H., et al. Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc. Natl Acad. Sci. USA 93, 6258–6263 (1996).

    Article  ADS  CAS  Google Scholar 

  45. Hung, D. T., Wong, Y. H., Vu, T.-K. H. & Coughlin, S. R. The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate both phosphoinositide hydrolysis and inhibit adenylyl cyclase . J. Biol. Chem. 353, 20831– 20834 (1992).

    Google Scholar 

  46. Offermanns, S., Laugwitz, K.-L., Spicher, K. & Schultz, G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc. Natl Acad. Sci. USA 91, 504–508 (1994).

    Article  ADS  CAS  Google Scholar 

  47. Barr, A. J., Brass, L. F. & Manning, D. R. Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor–G protein coupling. J. Biol. Chem. 272 , 2223–2229 (1997).

    Article  CAS  Google Scholar 

  48. Kozasa, T. et al. p115 RhoGEF, a GTPase-activating protein for Galpha12 and Galpha13. Science 280, 2109– 2111 (1998).

    Article  CAS  Google Scholar 

  49. Hart, M. J. et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Gα13 Science 280 , 2112–2114 (1998).

    Article  ADS  CAS  Google Scholar 

  50. Fukuhara, S., Murga, C., Zohar, M., Igishi, T. & Gutkind, J. S. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274, 5868–5879 ( 1999).

    Article  CAS  Google Scholar 

  51. Klages, B., Brandt, U., Simon, M. I., Schultz, G. & Offermanns, S. Activation of G12/G13 results in shape change and rho/rho kinase-mediated myosin light chain phosphorylation in mouse platelets. J. Cell. Biol. 144, 745–754 (1999).

    Article  CAS  Google Scholar 

  52. Vouret-Craviari, V., Boquet, P., Pouysségur, J. & Van Obberghen-Schilling, E. Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol. Biol. Cell 9, 2639–2653 (1998).

    Article  CAS  Google Scholar 

  53. Offermanns, S., Mancino, V., Revel, J.-P. & Simon, M. I. Vascular system defects and impaired cell chemokinesis as a result of Gα 13 deficiency. Science 275, 533– 536 (1997).

    Article  CAS  Google Scholar 

  54. Taylor, S., Chae, H. Z., Rhee, S.-G. & Exton, J. H. Activation of the B1 isozyme of phospholipase C by a subunits of the Gq class of G proteins . Nature 350, 516–518 (1991).

    Article  ADS  CAS  Google Scholar 

  55. Offermanns, S., Toombs, C. F., Hu, Y. H. & Simon, M. I. Defective platelet activation in Gαq-deficient mice. Nature 389, 183–186 (1997).

    Article  ADS  CAS  Google Scholar 

  56. Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

    Article  ADS  CAS  Google Scholar 

  57. Clapham, D. E. & Neer, E. J. G protein beta gamma subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    Article  CAS  Google Scholar 

  58. Leevers, S. J., Vanhaesebroeck, B. & Waterfield, M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr. Opin. Cell Biol. 11 , 219–225 (1999).

    Article  CAS  Google Scholar 

  59. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  ADS  CAS  Google Scholar 

  60. Esmon, C. T. Introduction: are natural anticoagulants candidates for modulating the inflammatory response to endotoxin? Blood 95, 1113– 1116 (2000).

    CAS  PubMed  Google Scholar 

  61. Esmon, C. T. et al. Regulation and functions of the protein C anticoagulant pathway . Haematologica 84, 363– 368 (1999).

    CAS  PubMed  Google Scholar 

  62. Palabrica, T. et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359, 848–851 (1992).

    Article  ADS  CAS  Google Scholar 

  63. Nystedt, S., Ramakrishnan, V. & Sundelin, J. The proteinase-activated receptor 2 is induced by inflammatory mediators in human endothelial cells. Comparison with the thrombin receptor . J. Biol. Chem. 271, 14910– 14915 (1996).

    Article  CAS  Google Scholar 

  64. Inbal, A. et al. Purpura fulminans induced by disseminated intravascular coagulation following infection in 2 unrelated children with double heterozygosity for factor V Leiden and protein S deficiency. Thromb. Haemost. 77, 1086–1089 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank B. Black, H. Bourne, I. Charo, P.-T. Chuang, C. Esmon and the members of my laboratory for critical reading of the manuscript, and T. Schoop for illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun R. Coughlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coughlin, S. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000). https://doi.org/10.1038/35025229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025229

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing