Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac channelopathies

Abstract

Genetic alterations of various ion channels produce heritable cardiac arrhythmias that predispose affected individuals to sudden death. The investigation of such 'channelopathies' continues to yield remarkable insights into the molecular basis of cardiac excitability. The concept of channelopathies is not restricted to genetic disorders; notably, changes in the expression or post-translational modification of ion channels underlie the fatal arrhythmias associated with heart failure. Recognizing the fundamental defects in channelopathies provides the basis for new strategies of treatment, including tailored pharmacotherapy and gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ion channels underlie cardiac excitability.
Figure 2: The action potential and the electrocardiogram (ECG).
Figure 3: Explanation of the mechanism underlying arrhythmia in long-QT syndrome.
Figure 4: Computational rationalization of heart failure arrhythmias on the basis of known cellular changes in ionic currents.

Similar content being viewed by others

References

  1. Catterall, W. A. Molecular properties of sodium and calcium channels. J. Bioenerg. Biomembr. 28, 219–230 (1996).

    Article  CAS  Google Scholar 

  2. Jan, L. Y. & Jan, Y. N. Voltage-gated and inwardly rectifying potassium channels. J. Physiol. 505, 267–282 (1997).

    Article  CAS  Google Scholar 

  3. Philipson, K. D. & Nicoll, D. A. Sodium–calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 (2000).

    Article  CAS  Google Scholar 

  4. Marban, E., Yamagishi, T. & Tomaselli, G. F. Structure and function of voltage-gated sodium channels. J. Physiol. 508, 647–657 (1998).

    Article  CAS  Google Scholar 

  5. Zeng, J. & Rudy, Y. Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophys. J. 68, 949–964 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Robbins, J. KCNQ channels: physiology, pathophysiology, and pharmacology. Pharmacol. Ther. 90, 1–19 (2001).

    Article  CAS  Google Scholar 

  7. Näbauer, M., Beuckelmann, D. J. & Erdmann, E. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73, 386–394 (1993).

    Article  Google Scholar 

  8. Hoppe, U. C. et al. Manipulation of cellular excitability by cell fusion: effects of rapid introduction of transient outward K+ current on the guinea pig action potential. Circ. Res. 84, 964–972 (1999).

    Article  CAS  Google Scholar 

  9. Papp, Z. et al. Two components of [Ca2+]i-activated Cl current during large [Ca2+]i transients in single rabbit heart Purkinje cells. J. Physiol. 483, 319–330 (1995).

    Article  CAS  Google Scholar 

  10. Koster, O. F., Szigeti, G. P. & Beuckelmann, D. J. Characterization of a [Ca2+]i-dependent current in human atrial and ventricular cardiomyocytes in the absence of Na+ and K+. Cardiovasc. Res. 41, 175–187 (1999).

    Article  CAS  Google Scholar 

  11. Kääb, S. et al. Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98, 1383–1393 (1998).

    Article  Google Scholar 

  12. Näbauer, M. et al. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93, 168–177 (1996).

    Article  Google Scholar 

  13. Hoppe, U. C., Marban, E. & Johns, D. C. Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer. J. Clin. Invest. 105, 1077–1084 (2000).

    Article  CAS  Google Scholar 

  14. Winslow, R. L., Rice, J. & Jafri, S. Modeling the cellular basis of altered excitation–contraction coupling in heart failure. Prog. Biophys. Mol. Biol. 69, 497–514 (1998).

    Article  CAS  Google Scholar 

  15. Keating, M. T. & Sanguinetti, M. C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104, 569–580 (2001).

    Article  CAS  Google Scholar 

  16. Yue, D. T. & Marban, E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pflugers Arch. 413, 127–133 (1988).

    Article  CAS  Google Scholar 

  17. Patel, A. J., Lazdunski, M. & Honore, E. Lipid and mechano-gated 2P domain K+ channels. Curr. Opin. Cell Biol. 13, 422–428 (2001).

    Article  CAS  Google Scholar 

  18. Kim, D. et al. Cloning and functional expression of a novel cardiac two-pore background K+ channel (cTBAK-1). Circ. Res. 82, 513–518 (1998).

    Article  CAS  Google Scholar 

  19. Luo, C. H. & Rudy, Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096 (1994).

    Article  CAS  Google Scholar 

  20. Weidmann, S. The electrical constants of Purkinje fibres. J. Physiol. 118, 348–360 (1952).

    Article  CAS  Google Scholar 

  21. Nichols, C. G., Ripoll, C. & Lederer, W. J. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ. Res. 68, 280–287 (1991).

    Article  CAS  Google Scholar 

  22. Marban, E., Robinson, S. W. & Wier, W. G. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J. Clin. Invest. 78, 1185–1192 (1986).

    Article  CAS  Google Scholar 

  23. Cranefield, P. F. & Aronson, R. S. Torsades de pointes and early afterdepolarizations. Cardiovasc. Drugs Ther. 5, 531–537 (1991).

    Article  CAS  Google Scholar 

  24. Saffitz, J. E., Laing, J. G. & Yamada, K. A. Connexin expression and turnover: implications for cardiac excitability. Circ. Res. 86, 723–728 (2000).

    Article  CAS  Google Scholar 

  25. Berenfeld, O. & Jalife, J. Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circ. Res. 82, 1063–1077 (1998).

    Article  CAS  Google Scholar 

  26. Hoffman, B. F. & Rosen, M. R. Cellular mechanisms for cardiac arrhythmias. Circ. Res. 49, 1–15 (1981).

    Article  CAS  Google Scholar 

  27. Samie, F. H. & Jalife, J. Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Cardiovasc. Res. 50, 242–250 (2001).

    Article  CAS  Google Scholar 

  28. Camm, A. J. et al. Congenital and acquired long QT syndrome. Eur. Heart J. 21, 1232–1237 (2000).

    Article  CAS  Google Scholar 

  29. Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).

    Article  CAS  Google Scholar 

  30. Sanguinetti, M. C. Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann. NY Acad. Sci. 868, 406–413 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Dumaine, R. et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ. Res. 78, 916–924 (1996).

    Article  CAS  Google Scholar 

  32. Hoppe, U. C., Marban, E. & Johns, D. C. Distinct gene-specific mechanisms of arrhythmia revealed by cardiac gene transfer of two long QT disease genes, HERG and KCNE1. Proc. Natl Acad. Sci. USA 98, 5335–5340 (2001).

    Article  ADS  CAS  Google Scholar 

  33. Splawski, I. et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178–1185 (2000).

    Article  CAS  Google Scholar 

  34. Schwartz, P. J. et al. Genotype–phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95 (2001).

    Article  CAS  Google Scholar 

  35. Plaster, N. M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105, 511–519 (2001).

    Article  CAS  Google Scholar 

  36. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Antzelevitch, C. The Brugada syndrome: ionic basis and arrhythmia mechanisms. J. Cardiovasc. Electrophysiol. 12, 268–272 (2001).

    Article  CAS  Google Scholar 

  38. Rook, M. B. et al. Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc. Res. 44, 507–517 (1999).

    Article  CAS  Google Scholar 

  39. Dumaine, R. et al. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ. Res. 85, 803–809 (1999).

    Article  CAS  Google Scholar 

  40. Wang, Y. & Rudy, Y. Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am. J. Physiol. Heart Circ. Physiol. 278, H1019–H1029 (2000).

    Article  CAS  Google Scholar 

  41. Schott, J. J. et al. Cardiac conduction defects associate with mutations in SCN5A. Nature Genet. 23, 20–21 (1999).

    Article  CAS  Google Scholar 

  42. Tan, H. L. et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409, 1043–1047 (2001).

    Article  ADS  CAS  Google Scholar 

  43. Veldkamp, M. W. et al. Two distinct congenital arrhythmias evoked by a multidysfunctional Na+ channel. Circ. Res. 86, E91–E97 (2000).

    Article  CAS  Google Scholar 

  44. Marban, E. Heart failure: the electrophysiologic connection. J. Cardiovasc. Electrophysiol. 10, 1425–1428 (1999).

    Article  CAS  Google Scholar 

  45. Beuckelmann, D. J., Näbauer, M. & Erdmann, E. Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73, 379–385 (1993).

    Article  CAS  Google Scholar 

  46. Kääb, S. et al. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ. Res. 78, 262–273 (1996).

    Article  Google Scholar 

  47. Berger, R. D. et al. Beat-to-beat QT interval variability: novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 96, 1557–1565 (1997).

    Article  CAS  Google Scholar 

  48. Studer, R. et al. Gene expression of the cardiac Na+–Ca2+ exchanger in end-stage human heart failure. Circ. Res. 75, 443–453 (1994).

    Article  CAS  Google Scholar 

  49. Winslow, R. L. et al. Mechanisms of altered excitation–contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ. Res. 84, 571–586 (1999).

    Article  CAS  Google Scholar 

  50. Sanguinetti, M. C. et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81, 299–307 (1995).

    Article  CAS  Google Scholar 

  51. Mitcheson, J. S. et al. A structural basis for drug-induced long QT syndrome. Proc. Natl Acad. Sci. USA 97, 12329–12333 (2000).

    Article  ADS  CAS  Google Scholar 

  52. Liu, X. K. et al. Female gender is a risk factor for torsades de pointes in an in vitro animal model. J. Cardiovasc. Pharmacol. 34, 287–294 (1999).

    Article  CAS  Google Scholar 

  53. Roden, D. M. & Spooner, P. M. Inherited long QT syndromes: a paradigm for understanding arrhythmogenesis. J. Cardiovasc. Electrophysiol. 10, 1664–1683 (1999).

    Article  CAS  Google Scholar 

  54. Roden, D. M. Pharmacogenetics and drug-induced arrhythmias. Cardiovasc. Res. 50, 224–231 (2001).

    Article  CAS  Google Scholar 

  55. Abbott, G. W. et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187 (1999).

    Article  CAS  Google Scholar 

  56. Mazhari, R. et al. Molecular interactions between two long-QT syndrome gene products, HERG and KCNE2, rationalized by in vitro and in silico analysis. Circ. Res. 89, 33–38 (2001).

    Article  CAS  Google Scholar 

  57. Priori, S. G. et al. Genetic and molecular basis of cardiac arrhythmias: impact on clinical management parts I and II. Circulation 99, 518–528 (1999).

    Article  CAS  Google Scholar 

  58. Benhorin, J. et al. Effects of flecainide in patients with new SCN5A mutation: mutation- specific therapy for long-QT syndrome? Circulation 101, 1698–1706 (2000).

    Article  CAS  Google Scholar 

  59. Windle, J. R. et al. Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A:DeltaKPQ mutation. Ann. Noninvasive Electrocardiol. 6, 153–158 (2001).

    Article  CAS  Google Scholar 

  60. Compton, S. J. et al. Genetically defined therapy of inherited long-QT syndrome. Correction of abnormal repolarization by potassium. Circulation 94, 1018–1022 (1996).

    Article  CAS  Google Scholar 

  61. Shimizu, W. et al. Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation 97, 1581–1588 (1998).

    Article  CAS  Google Scholar 

  62. Nuss, H. B. et al. Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Ther. 3, 900–912 (1996).

    MathSciNet  CAS  PubMed  Google Scholar 

  63. Nuss, H. B., Marban, E. & Johns, D. C. Overexpression of a human potassium channel suppresses cardiac hyperexcitability in rabbit ventricular myocytes. J. Clin. Invest. 103, 889–896 (1999).

    Article  CAS  Google Scholar 

  64. Donahue, J. K. et al. Focal modification of electrical conduction in the heart by viral gene transfer. Nature Med. 6, 1395–1398 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH. E.M. is the Michel Mirowski, M.D. Professor of Cardiology of the Johns Hopkins University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Marbán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marbán, E. Cardiac channelopathies. Nature 415, 213–218 (2002). https://doi.org/10.1038/415213a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415213a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing