Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New ideas about atrial fibrillation 50 years on

Abstract

Atrial fibrillation is a condition in which control of heart rhythm is taken away from the normal sinus node pacemaker by rapid activity in different areas within the upper chambers (atria) of the heart. This results in rapid and irregular atrial activity and, instead of contracting, the atria only quiver. It is the most common cardiac rhythm disturbance and contributes substantially to cardiac morbidity and mortality. For over 50 years, the prevailing model of atrial fibrillation involved multiple simultaneous re-entrant waves, but in light of new discoveries this hypothesis is now undergoing re-evaluation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of electrical activity during atrial fibrillation.
Figure 2: Cellular mechanisms of atrial arrhythmia generation.
Figure 3: Conceptual models of atrial fibrillation in the early twentieth century, along with therapeutic implications.
Figure 4: Models of re-entry and implications for atrial fibrillation.
Figure 5: Ionic determinants of atrial fibrillation.
Figure 6: Changes in cell Ca2+ loading caused by atrial fibrillation and consequent adaptive responses.
Figure 7: A synthesis of recent advances in our knowledge of the substrates for atrial fibrillation.

Similar content being viewed by others

Bianca J. J. M. Brundel, Xun Ai, … Natasja M. S. de Groot

Notes

  1. * Please note: a correction has been made to reference 58 in this paper. The printed version was published with a misspelt name.

References

  1. Benjamin, E. J. et al. Impact of atrial fibrillation on the risk of death. The Framingham heart study. Circulation 98, 946–952 (1998).

    Article  CAS  Google Scholar 

  2. Ho, K. K., Pinsky, J. L., Kannel, W. B. & Levy, D. The epidemiology of heart failure: the Framingham study. J. Am. Coll. Cardiol. 22, 6A–13A (1993).

    Article  CAS  Google Scholar 

  3. Fenelon, G., Wijns, W., Andries, E. & Brugada, P. Tachycardiomyopathy: mechanisms and clinical implications. Pacing Clin. Electrophysiol. 19, 95–106 (1996).

    Article  CAS  Google Scholar 

  4. Hart, R. G. & Halperin, J. L. Atrial fibrillation and stroke: concepts and controversies. Stroke 32, 803–808 (2001).

    Article  CAS  Google Scholar 

  5. Nattel, S. Experimental evidence for proarrhythmic mechanisms of antiarrhythmic drugs. Cardiovasc. Res. 37, 567–577 (1998).

    Article  CAS  Google Scholar 

  6. Nattel, S. Newer developments in the management of atrial fibrillation. Am. Heart J. 130, 1094–1106 (1995).

    Article  CAS  Google Scholar 

  7. Garrey, W. E. Auricular fibrillation. Physiol. Rev. 4, 215–250 (1924).

    Article  Google Scholar 

  8. Cox, J. L. & Ad, N. New surgical and catheter-based modifications of the Maze procedure. Semin. Thorac. Cardiovasc. Surg. 12, 68–73 (2000).

    Article  CAS  Google Scholar 

  9. Moe, G. K., Rheinboldt, W. C. & Abildskov, J. A. A computer model of atrial fibrillation. Am. Heart J. 67, 200–220 (1964).

    Article  CAS  Google Scholar 

  10. Allessie, M. A., Bonke, F. I. & Schopman, F. J. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res. 41, 9–18 (1977).

    Article  CAS  Google Scholar 

  11. Rensma, P. L., Allessie, M. A., Lammers, W. J., Bonke, F. I. & Schalij, M. J. Length of excitation wave and susceptibility to reentrant atrial arrhythmias in normal conscious dogs. Circ. Res. 62, 395–410 (1988).

    Article  CAS  Google Scholar 

  12. Mandapati, R., Skanes, A., Chen, J., Berenfeld, O. & Jalife, J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 101, 194–199 (2000).

    Article  CAS  Google Scholar 

  13. Mansour, M. et al. Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation 103, 2631–2636 (2001).

    Article  CAS  Google Scholar 

  14. Morillo, C. A., Klein, G. J., Jones, D. L., Guiraudon, C. M. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91, 1588–1595 (1995).

    Article  CAS  Google Scholar 

  15. Haissaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).

    Article  CAS  Google Scholar 

  16. Li, D., Zhang, L., Kneller, J., Shi, H. & Nattel, S. Ionic mechanism of repolarization differences between canine right and left atrium. Circ. Res. 88, 1168–1175 (2001).

    Article  CAS  Google Scholar 

  17. Derakhchan, K. et al. Method for simultaneous epicardial and endocardial mapping of the in vivo canine heart: application to atrial conduction properties and arrhythmia mechanisms. J. Cardiovasc. Electrophysiol. 12, 542–555 (2001).

    Article  Google Scholar 

  18. Nattel, S., Li, D. & Yue, L. Basic mechanisms of atrial fibrillation- very new insights into very old ideas. Annu. Rev. Physiol. 62, 51–77 (2000).

    Article  CAS  Google Scholar 

  19. Li, G.-R., Feng, J., Wang, Z., Fermini, B. & Nattel, S. Adrenergic modulation of ultrarapid delayed rectifier K+ current in human atrial myocytes. Circ. Res. 78, 903–915 (1996).

    Article  CAS  Google Scholar 

  20. Wang, Z., Fermini, B. & Nattel, S. Sustained depolarization-induced outward current in human atrial myocytes: evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ. Res. 73, 1061–1076 (1993).

    Article  CAS  Google Scholar 

  21. Li, G.-R., Feng, J., Yue, L., Carrier, M. & Nattel, S. Evidence for two components of delayed rectifier potassium current in human ventricular myocytes. Circ. Res. 78, 689–696 (1996).

    Article  CAS  Google Scholar 

  22. Feng, J., Wible, B., Li, G.-R., Wang, Z. & Nattel, S. Antisense oligonucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier potassium current in cultured adult human atrial myocytes. Circ. Res. 80, 572–579 (1997).

    Article  CAS  Google Scholar 

  23. Wijffels, M. C. et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92, 1954–1968 (1995).

    Article  CAS  Google Scholar 

  24. Wijffels, M. C., Kirchhof, C. J., Dorland, R., Power, J. & Allessie, M. A. Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation 96, 3710–3720 (1997).

    Article  CAS  Google Scholar 

  25. Sun, H., Chartier, D., Leblanc, N. & Nattel, S. Intracellular calcium changes and tachycardia-induced contractile dysfunction in canine atrial myocytes. Cardiovasc. Res. 49, 751–761 (2001).

    Article  CAS  Google Scholar 

  26. Courtemanche, M., Ramirez, R. F. & Nattel, S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (Heart Circ. Physiol. 44) (1998).

    CAS  PubMed  Google Scholar 

  27. Yue, L. et al. Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation. Circ. Res. 84, 776–784 (1999).

    Article  CAS  Google Scholar 

  28. Brundel, B. J. et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc. Res. 42, 443–454 (1999).

    Article  CAS  Google Scholar 

  29. Lai, L.-P. et al. Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca2+-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, clasequestrin and phospholamban. An insight into the mechanism of atrial electrical remodeling. J. Am. Coll. Cardiol. 33, 1231–1237 (1999).

    Article  CAS  Google Scholar 

  30. Yue, L. et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ. Res. 81, 512–525 (1997).

    Article  CAS  Google Scholar 

  31. Van Wagoner, D. R. et al. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ. Res. 85, 428–436 (1999).

    Article  CAS  Google Scholar 

  32. Bosch, R. F. et al. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc. Res. 44, 121–131 (1999).

    Article  CAS  Google Scholar 

  33. Gaspo, R., Bosch, R. F., Talajic, M. & Nattel, S. Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation 96, 4027–4035 (1997).

    Article  CAS  Google Scholar 

  34. Sun, H., Gaspo, R., Leblanc, N. & Nattel, S. The cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation 98, 719–727 (1998).

    Article  CAS  Google Scholar 

  35. Ohkusa, T. et al. Alterations in cardiac sarcoplasmic reticulum Ca2+ regulatory proteins in the atrial tissue of patients with chronic atrial fibrillation. J. Am. Coll. Cardiol. 34, 255–263 (1999).

    Article  CAS  Google Scholar 

  36. Ausma, J. et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96, 3157–3163 (1997).

    Article  CAS  Google Scholar 

  37. Black, I. W. et al. Exclusion of atrial thrombus by transesophageal echocardiography does not preclude embolism after cardioversion of atrial fibrillation. A multicenter study. Circulation 89, 2509–2513 (1994).

    Article  CAS  Google Scholar 

  38. Gaspo, R., Bosch, R. F., Bou-Abboud, E. & Nattel, S. Tachycardia-induced changes in sodium current in a chronic dog model of atrial fibrillation. Circ. Res. 81, 1045–1052 (1997).

    Article  CAS  Google Scholar 

  39. Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S. & Nerbonne, J. M. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res. 80, 772–781 (1997).

    Article  CAS  Google Scholar 

  40. Elvan, A., Huang, X. D., Pressler, M. L. & Zipes, D. P. Radiofrequency catheter ablation of the atrial eliminates pacing-induced sustained atrial fibrillation and reduces connexin43 in dogs. Circulation 96, 1675–1685 (1997).

    Article  CAS  Google Scholar 

  41. van der Welden, H. M. W. et al. Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc. Res. 46, 476–486 (2000).

    Article  Google Scholar 

  42. Dupont, E. et al. The gap-junctional protein connexin40 is elevated in patients susceptible to postoperative atrial fibrillation. Circulation 103, 842–849 (2001).

    Article  CAS  Google Scholar 

  43. Li, D. et al. The effects of experimental heart failure on atrial cellular and ionic electrophysiology. Circulation 101, 2631–2638 (2000).

    Article  CAS  Google Scholar 

  44. Li, D., Fareh, S., Leung, T. K. & Nattel, S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100, 87–95 (1999).

    Article  CAS  Google Scholar 

  45. Fenelon, G., Manders, T. & Stambler, B.S. Atrial tachycardia in dogs with ventricular pacing-induced congestive heart failure originates from multiple foci in the crista terminalis and pulmonary veins: experimental evidence supporting the “atrial ring of fire” hypothesis. Circulation 96, I-237 (1999).

  46. Goette, A. et al. Incresed expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J. Am. Coll. Cardiol. 35, 1669–1677 (2000).

    Article  CAS  Google Scholar 

  47. Goette, A. et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101, 2678–2681 (2000).

    Article  CAS  Google Scholar 

  48. Lendeckel, U. et al. Expression and activity of ectopeptidases in fibrillating human atria. J. Mol. Cell. Cardiol. 33, 1273–1281 (2001).

    Article  CAS  Google Scholar 

  49. Aime-Sempe, C. et al. Myocardial cell death in fibrillating and dilated human right atria. J. Am. Coll. Cardiol. 34, 1577–1586 (1999).

    Article  CAS  Google Scholar 

  50. Li, D. et al. Effects of angiotensin converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104, 2608–2614 (2001).

    Article  CAS  Google Scholar 

  51. Cardin, S., Li, D., Thorin, E., Leung, T. K. & Nattel, S. Role of apoptosis and tissue fibrosis in arrhythmogenic atrial structural remodeling in a canine model of congestive heart failure (abstract). Circulation 104, II-77 (2001).

    Google Scholar 

  52. Pedersen, O. D., Bagger, H. Kober, L. & Torp-Pedersen, C. Trandolapril reduces the incidence of atrial fibrillation after acute myocardial infarction in patients with left ventricular dysfunction. Circulation 100, 376–380 (1999).

    Article  CAS  Google Scholar 

  53. Beyer, F., Paul, T., Luhmer, I., Bertram, H. & Kallfelz, H. C. Familiäres idiopathisches Vorhofflimmern mit Bradyarrhythmie. Z. Kardiol. 82, 674–677 (1993).

    CAS  PubMed  Google Scholar 

  54. Brugada, R. et al. Identification of a genetic locus for familial atrial fibrillation. N. Engl. J. Med. 336, 905–911 (1997).

    Article  CAS  Google Scholar 

  55. Hagendorff, A. et al. Conduction disturbances and increased atrial vulnerability in connexin 40-deficient mice analyzed by transesophageal stimulation. Circulation 99, 1508–1515 (1999).

    Article  CAS  Google Scholar 

  56. Sah, V.P. et al. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J. Clin. Invest. 103, 1627–1634 (1999).

    Article  CAS  Google Scholar 

  57. Nakajima, H. et al. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-β1 transgene in the heart. Circ. Res. 86, 571–579 (2000).

    Article  CAS  Google Scholar 

  58. Raiesdana*, A. et al. Inducibility of atrial arrhythmias in transgenic mice with selective atrial fibrosis die to overexpression of TGFβ-1. Pacing Clin. Electrophysiol. 24, 549 (2001).

  59. Yu, W. C. et al. Tachycardia-induced change of atrial refractory period in humans: rate dependency and effects of antiarrhythmic drugs. Circulation 97, 2331–2337 (1998).

    Article  CAS  Google Scholar 

  60. Daoud, E. G. et al. Effect of verapamil and procainamide on atrial fibrillation-induced electrical remodeling in humans. Circulation 96, 1542–1550 (1997).

    Article  CAS  Google Scholar 

  61. Tieleman, R. G. et al. Verapamil reduces tachycardia-induced electrical remodeling of the atria. Circulation 95, 1945–1953 (1997).

    Article  CAS  Google Scholar 

  62. Lee, S. H. et al. Effect of verapamil on long-term tachycardia-induced atrial electrical remodeling. Circulation 101, 200–206 (2000).

    Article  CAS  Google Scholar 

  63. Fareh, S., Bénardeau, A. & Nattel, S. Differential efficacy of L- and T-type calcium channel blockers in preventing tachycardia-induced atrial remodeling in dogs. Cardiovasc. Res. 49, 762–770 (2001).

    Article  CAS  Google Scholar 

  64. Fareh, S., Benardeau, A., Thibault, B. & Nattel S. The T-type Ca2+ channel blocker mibefradil prevents the development of a substrate for atrial fibrillation by tachycardia-induced atrial remodeling in dogs. Circulation 100, 2191–2197 (1999).

    Article  CAS  Google Scholar 

  65. Li, G.-R. & Nattel, S. Properties of transmembrane Ca2+ current at physiologic temperatures relevant to the action potential in human atrial myocytes. Am. J. Physiol. 272, H227–H235 (Heart Circ. Physiol. 41) (1997).

    CAS  PubMed  Google Scholar 

  66. Carnes, C. A. et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ. Res. 89, e32–e38 (2001).

  67. Hobbs, W. J., Van Gelder, I. C., Fitzpatrick, A. P., Crijns, H. J. & Garratt, C. J. The role of atrial electrical remodeling in the progression of focal atrial ectopy to persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 10, 866–870 (1999).

    Article  CAS  Google Scholar 

  68. Doshi, R. N. et al. Relation between ligament of Marshall and adrenergic atrial tachyarrhythmia. Circulation 100, 876–883 (1999).

    Article  CAS  Google Scholar 

  69. Tsai, C. F. et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation 102, 67–74 (2000).

    Article  CAS  Google Scholar 

  70. Wu, T. J. et al. Pulmonary veins and ligament of Marshall as sources of rapid activations in a canine model of sustained atrial fibrillation. Circulation 103, 1157–1163 (2001).

    Article  CAS  Google Scholar 

  71. Kumagai, K. et al. Role of rapid focal activation in the maintenance of atrial fibrillation originating from the pulmonary veins. Pacing Clin. Electrophysiol. 23, 1823–1827 (2000).

    Article  CAS  Google Scholar 

  72. Sueda, T. et al. Efficacy of pulmonary vein isolation for the elimination of chronic atrial fibrillation in cardiac valvular surgery. Ann. Thorac. Surg. 71, 1189–1193 (2001).

    Article  CAS  Google Scholar 

  73. Cheung, D. W. Electrical activity of the pulmonary vein and its interaction with the right atrium in the guinea-pig. J. Physiol. 314, 445–456 (1981).

    Article  CAS  Google Scholar 

  74. Chen, Y.-J., Chen, S.-A., Chang, M.-S. & Lin, C.-I. Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation. Cardiovasc. Res. 48, 265–273 (2000).

    Article  CAS  Google Scholar 

  75. Bode, F. et al. Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36 (2001).

    Article  ADS  CAS  Google Scholar 

  76. Shi, W. et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ. Res. 85, e1–e6 (1999).

    Article  CAS  Google Scholar 

  77. Beaumont, J., Davidenko, N., Davidenko J. M. & Jalife, J. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Biophys. J. 75, 1–14 (1998).

    Article  ADS  CAS  Google Scholar 

  78. Athill, C. A. et al. Transmembrane potential properties at the core of functional reentrant wave fronts in isolated canine right atria. Circulation 98, 1556–1567 (1998).

    Article  CAS  Google Scholar 

  79. Kneller, J. & Nattel, S. How do class I antiarrhythmic drugs terminate atrial fibrillation? A quantitative analysis based on a realistic ionic model (abstract). Circulation 104, II-5 (2001).

    Google Scholar 

  80. Wijffels, M. C. et al. Widening of the excitable gap during pharmacological cardioversion of atrial fibrillation in the goat: effects of cibenzoline, hydroquinidine, flecainide, and d-sotalol. Circulation 102, 260–267 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Nattel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nattel, S. New ideas about atrial fibrillation 50 years on. Nature 415, 219–226 (2002). https://doi.org/10.1038/415219a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415219a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing