Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tackling heart failure in the twenty-first century

Abstract

Heart failure, or congestive heart failure, is a condition in which the heart cannot supply the body's tissues with enough blood. The result is a cascade of changes that lead to severe fatigue, breathlessness and, ultimately, death. In the past quarter century, much progress has been made in understanding the molecular and cellular processes that contribute to heart failure, leading to the development of effective therapies. Despite this, chronic heart failure remains a major cause of illness and death. And because the condition becomes more common with increasing age, the number of affected individuals is rising with the rapidly ageing global population. New treatments that target disease mechanisms at the cellular and whole-organ level are needed to halt and reverse the devastating consequences of this disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cardiomyocyte signalling pathways involved in the pathophysiology of heart failure.
Figure 2: Ca2+-handling abnormalities in myocytes in the failing heart.
Figure 3: Abnormal metabolism and energy regulation in the failing heart.
Figure 4: Modulation of contraction by regulatory myofilament proteins in a cardiomyocyte.

Similar content being viewed by others

References

  1. Lutz, J. E. A XII century description of congestive heart failure. Am. J. Cardiol. 61, 494–495 (1988).

    CAS  PubMed  Google Scholar 

  2. Rosamond, W. et al. Heart disease and stroke statistics — 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25–e146 (2008).

    PubMed  Google Scholar 

  3. Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J Med. 325, 1468–1475 (1991).

    CAS  PubMed  Google Scholar 

  4. Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    CAS  PubMed  Google Scholar 

  5. Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nature Med. 7, 1236–1240 (2001).

    CAS  PubMed  Google Scholar 

  6. Yan, L. et al. Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130, 247–258 (2007).

    CAS  PubMed  Google Scholar 

  7. White, D. C. et al. Preservation of myocardial β-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl Acad. Sci. USA 97, 5428–5433 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lai, N. C. et al. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation 110, 330–336 (2004).

    CAS  PubMed  Google Scholar 

  9. Heineke, J. & Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Rev. Mol. Cell Biol. 7, 589–600 (2006).

    CAS  Google Scholar 

  10. Perrino, C. et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J. Clin. Invest. 116, 1547–1560 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 341, 709–717 (1999).

    CAS  PubMed  Google Scholar 

  12. Pfeffer, M. A. et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the Survival and Ventricular Enlargement Trial. N. Engl. J. Med. 327, 669–677 (1992). This was one of the first trials to show that, in patients with heart failure, neurohormonal suppression improves the rates of morbidity and mortality.

    CAS  PubMed  Google Scholar 

  13. Packer, M. et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001).

    CAS  PubMed  Google Scholar 

  14. Brodde, O. E. β-Adrenoceptor blocker treatment and the cardiac β-adrenoceptor–G-protein(s)–adenylyl cyclase system in chronic heart failure. Naunyn Schmiedebergs Arch. Pharmacol. 374, 361–372 (2007).

    CAS  PubMed  Google Scholar 

  15. Lowes, B. D. et al. Myocardial gene expression in dilated cardiomyopathy treated with β-blocking agents. N. Engl. J. Med. 346, 1357–1365 (2002).

    CAS  PubMed  Google Scholar 

  16. Xiao, R. P. β-Adrenergic signaling in the heart: dual coupling of the β2-adrenergic receptor to Gs and Gi proteins. Sci. STKE 2001, RE15, doi:10.1126/stke.2001.104.re15 (2001).

  17. Noma, T. et al. β-Arrestin-mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J. Clin. Invest. 117, 2445–2458 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    CAS  PubMed  Google Scholar 

  19. Forfia, P. R. et al. Acute phosphodiesterase 5 inhibition mimics hemodynamic effects of B-type natriuretic peptide and potentiates B-type natriuretic peptide effects in failing but not normal canine heart. J. Am. Coll. Cardiol. 49, 1079–1088 (2007).

    CAS  PubMed  Google Scholar 

  20. Morita, H., Seidman, J. & Seidman, C. E. Genetic causes of human heart failure. J. Clin. Invest. 115, 518–526 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Boheler, K. R. et al. Sex- and age-dependent human transcriptome variability: implications for chronic heart failure. Proc. Natl Acad. Sci. USA 100, 2754–2759 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor, A. L. et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med. 351, 2049–2057 (2004).

    CAS  PubMed  Google Scholar 

  23. Liggett, S. B. et al. The Ile164 β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J. Clin. Invest. 102, 1534–1539 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wagoner, L. E. et al. Polymorphisms of the β2-adrenergic receptor determine exercise capacity in patients with heart failure. Circ. Res. 86, 834–840 (2000).

    CAS  PubMed  Google Scholar 

  25. Small, K. M., Wagoner, L. E., Levin, A. M., Kardia, S. L. & Liggett, S. B. Synergistic polymorphisms of β1- and α2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 347, 1135–1142 (2002).

    CAS  PubMed  Google Scholar 

  26. Liggett, S. B. et al. A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure. Proc. Natl Acad. Sci. USA 103, 11288–11293 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mialet, P. J. et al. β1-Adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nature Med. 9, 1300–1305 (2003). This study describes how a β 1 -AR polymorphism (arginine at position 389) in animal models and humans affects adrenergic signalling in heart failure and affects the response to therapy.

    Google Scholar 

  28. Liggett, S. B. et al. A functional polymorphism of the Gαq (GNAQ) gene is associated with accelerated mortality in African American heart failure. Hum. Mol. Genet. 16, 2740–2750 (2007).

    CAS  PubMed  Google Scholar 

  29. McKinsey, T. A. & Kass, D. A. Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nature Rev. Drug Discov. 6, 617–635 (2007).

    CAS  Google Scholar 

  30. Molkentin, J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998). This paper shows the importance of Ca2+-dependent calcineurin activation in the development of hypertrophy and heart failure.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, R. et al. Calmodulin kinase II inhibition protects against structural heart disease. Nature Med. 11, 409–417 (2005).

    ADS  CAS  PubMed  Google Scholar 

  32. Braz, J. C. et al. PKC-α regulates cardiac contractility and propensity toward heart failure. Nature Med. 10, 248–254 (2004).

    CAS  PubMed  Google Scholar 

  33. Liao, P. et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc. Natl Acad. Sci. USA 98, 12283–12288 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hardt, S. E. & Sadoshima, J. Glycogen synthase kinase-3β: a novel regulator of cardiac hypertrophy and development. Circ. Res. 90, 1055–1063 (2002).

    CAS  PubMed  Google Scholar 

  35. Antos, C. L. et al. Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA 99, 907–912 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirotani, S. et al. Inhibition of glycogen synthase kinase 3β during heart failure is protective. Circ. Res. 101, 1164–1174 (2007).

    CAS  PubMed  Google Scholar 

  37. Schwartzbauer, G. & Robbins, J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J. Biol. Chem. 276, 35786–35793 (2001).

    CAS  PubMed  Google Scholar 

  38. Trivedi, C. M. et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nature Med. 13, 324–331 (2007).

    CAS  PubMed  Google Scholar 

  39. Zhai, P. et al. Glycogen synthase kinase-3α reduces cardiac growth and pressure overload-induced cardiac hypertrophy by inhibition of extracellular signal-regulated kinases. J. Biol. Chem. 282, 33181–33191 (2007).

    CAS  PubMed  Google Scholar 

  40. van der, H. A. & Burgering, B. M. Stressing the role of FoxO proteins in lifespan and disease. Nature Rev. Mol. Cell Biol. 8, 440–450 (2007).

    Google Scholar 

  41. Hofmann, F., Feil, R., Kleppisch, T. & Schlossmann, J. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol. Rev. 86, 1–23 (2006).

    CAS  PubMed  Google Scholar 

  42. Takimoto, E. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nature Med. 11, 214–222 (2005). This study shows that the PDE5 inhibitor sildenafil can stimulate cGMP–PKG signalling and thereby reverse cardiac remodelling induced by pressure overload.

    CAS  PubMed  Google Scholar 

  43. Kass, D. A., Champion, H. C. & Beavo, J. A. Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ. Res. 101, 1084–1095 (2007).

    CAS  PubMed  Google Scholar 

  44. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McKinsey, T. A., Zhang, C. L. & Olson, E. N. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc. Natl Acad. Sci. USA 97, 14400–14405 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. McKinsey, T. A., Zhang, C. L., Lu, J. & Olson, E. N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oka, T. et al. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ. Res. 98, 837–845 (2006).

    CAS  PubMed  Google Scholar 

  48. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 13, 613–618 (2007).

    CAS  PubMed  Google Scholar 

  49. Van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007). This paper shows that a miRNA encoded in an intron of the α-myosin heavy chain gene is responsible for regulating cardiac hypertrophy, fibrosis and β-myosin heavy chain production in response to stress-induced signalling.

    ADS  CAS  PubMed  Google Scholar 

  50. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Med. 13, 486–491 (2007).

    CAS  PubMed  Google Scholar 

  51. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    ADS  PubMed  Google Scholar 

  52. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721–726 (2007).

    CAS  PubMed  Google Scholar 

  53. Takimoto, E. & Kass, D. A. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49, 241–248 (2007).

    CAS  PubMed  Google Scholar 

  54. Takimoto, E. et al. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J. Clin. Invest. 115, 1221–1231 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Foo, R. S., Mani, K. & Kitsis, R. N. Death begets failure in the heart. J. Clin. Invest. 115, 565–571 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wencker, D. et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest. 111, 1497–1504 (2003). This paper shows that cardiac-restricted overproduction of an active caspase results in dilated cardiomyopathy, highlighting the role of apoptosis in the development of heart failure.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hilfiker-Kleiner, D., Hilfiker, A. & Drexler, H. Many good reasons to have STAT3 in the heart. Pharmacol. Ther. 107, 131–137 (2005).

    CAS  PubMed  Google Scholar 

  58. Shiraishi, I. et al. Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ. Res. 94, 884–891 (2004).

    CAS  PubMed  Google Scholar 

  59. Nakayama, H. et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J. Clin. Invest. 117, 2431–2444 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–1793 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Med. 13, 619–624 (2007).

    CAS  PubMed  Google Scholar 

  62. Gnecchi, M. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Med. 11, 367–368 (2005).

    CAS  PubMed  Google Scholar 

  63. Bers, D. M. Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda) 21, 380–387 (2006).

    CAS  Google Scholar 

  64. Miyamoto, M. I. et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl Acad. Sci. USA 97, 793–798 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pathak, A. et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ. Res. 96, 756–766 (2005).

    CAS  PubMed  Google Scholar 

  66. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000). This study shows that calstabin 2 regulates RYR2-mediated Ca2+ release from the sarcoplasmic reticulum and that hyperphosphorylation of calstabin 2 by PKA contributes to the defective regulation of RYR2.

    CAS  PubMed  Google Scholar 

  67. Yano, M. et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107, 477–484 (2003).

    CAS  PubMed  Google Scholar 

  68. Curran, J., Hinton, M. J., Rios, E., Bers, D. M. & Shannon, T. R. β-Adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ. Res. 100, 391–398 (2007).

    CAS  PubMed  Google Scholar 

  69. Wehrens, X. H. et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304, 292–296 (2004).

    ADS  CAS  PubMed  Google Scholar 

  70. Balijepalli, R. C., Foell, J. D., Hall, D. D., Hell, J. W. & Kamp, T. J. Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for β2-adrenergic regulation. Proc. Natl Acad. Sci. USA 103, 7500–7505 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frey, N. et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nature Med. 10, 1336–1343 (2004).

    CAS  PubMed  Google Scholar 

  72. Wu, X. et al. Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation–transcription coupling. J. Clin. Invest. 116, 675–682 (2006). This paper describes how hypertrophy-mediated gene regulation can be controlled by Ca2+ microdomains, which are insulated from the global fluctuations in Ca2+ concentrations that are associated with excitation–contraction coupling.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohba, T. et al. Upregulation of TRPC1 in the development of cardiac hypertrophy. J. Mol. Cell. Cardiol. 42, 498–507 (2007).

    CAS  PubMed  Google Scholar 

  74. Onohara, N. et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 25, 5305–5316 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuwahara, K. et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest. 116, 3114–3126 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    ADS  CAS  PubMed  Google Scholar 

  77. Lehman, J. J. et al. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 106, 847–856 (2000). This study shows that PGC1 is a crucial regulator of cardiac mitochondrial function during normal growth and stress-induced states.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vega, R. B., Huss, J. M. & Kelly, D. P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20, 1868–1876 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Arany, Z. et al. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc. Natl Acad. Sci. USA 103, 10086–10091 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Davila-Roman, V. G. et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 40, 271–277 (2002).

    CAS  PubMed  Google Scholar 

  81. Taha, M. & Lopaschuk, G. D. Alterations in energy metabolism in cardiomyopathies. Ann. Med. 39, 594–607 (2007).

    CAS  PubMed  Google Scholar 

  82. Abozguia, K., Clarke, K., Lee, L. & Frenneaux, M. Modification of myocardial substrate use as a therapy for heart failure. Nature Clin. Pract. Cardiovasc. Med. 3, 490–498 (2006).

    CAS  Google Scholar 

  83. Weiss, R. G., Gerstenblith, G. & Bottomley, P. A. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc. Natl Acad. Sci. USA 102, 808–813 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115, 2108–2118 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Heineke, J. et al. Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J. Clin. Invest. 117, 3198–3210 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sano, M. et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446, 444–448 (2007). This paper shows that p53 is important in the transition from hypertrophy to heart failure, through its antiangiogenic effects on HIF1α signalling, highlighting the importance of matching myocardial blood supply to tissue growth in progressive cardiac remodelling.

    ADS  CAS  PubMed  Google Scholar 

  87. Lowes, B. D. et al. Changes in gene expression in the intact human heart. Downregulation of α-myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest. 100, 2315–2324 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hayashi, T. et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2192–2201 (2004).

    CAS  PubMed  Google Scholar 

  89. Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    CAS  PubMed  Google Scholar 

  90. Granzier, H. L. & Labeit, S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ. Res. 94, 284–295 (2004).

    CAS  PubMed  Google Scholar 

  91. Nagueh, S. F. et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110, 155–162 (2004).

    CAS  PubMed  Google Scholar 

  92. Peng, J. et al. Cardiac hypertrophy and reduced contractility in hearts deficient in the titin kinase region. Circulation 115, 743–751 (2007).

    CAS  PubMed  Google Scholar 

  93. Kass, D. A. & Solaro, R. J. Mechanisms and use of calcium-sensitizing agents in the failing heart. Circulation 113, 305–315 (2006).

    PubMed  Google Scholar 

  94. Spragg, D. D. & Kass, D. A. Pathobiology of left ventricular dyssynchrony and resynchronization. Prog. Cardiovasc. Dis. 49, 26–41 (2006).

    PubMed  Google Scholar 

  95. Chakir, K. et al. Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization. Circulation (in the press).

  96. Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    PubMed  Google Scholar 

  97. Heerdt, P. M. et al. Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102, 2713–2719 (2000).

    CAS  PubMed  Google Scholar 

  98. Birks, E. J. et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 355, 1873–1884 (2006).

    CAS  PubMed  Google Scholar 

  99. Imai, M. et al. Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J. Am. Coll. Cardiol. 49, 2120–2128 (2007).

    PubMed  Google Scholar 

  100. Li, M. et al. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109, 120–124 (2004).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institutes of Health for financial support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D.A.K. is a founder of, and a scientific adviser to, Cardioxyl Pharmaceuticals, a start-up company developing nitroxyl (HNO) for the treatment of heart failure. He is also a scientific adviser to Boston Scientific, NanoCor Therapeutics and Cytokinetics. J.O.M. declares no competing interests.

Additional information

Correspondence should be addressed to D.A.K. (dkass@jhmi.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudd, J., Kass, D. Tackling heart failure in the twenty-first century. Nature 451, 919–928 (2008). https://doi.org/10.1038/nature06798

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06798

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing