Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The fibrin-derived peptide Bβ15–42 protects the myocardium against ischemia-reperfusion injury

This article has been updated

Abstract

In the event of a myocardial infarction, current interventions aim to reopen the occluded vessel to reduce myocardial damage and injury. Although reperfusion is essential for tissue salvage, it can cause further damage and the onset of inflammation. We show a novel anti-inflammatory effect of a fibrin-derived peptide, Bβ15–42. This peptide competes with the fibrin fragment N-terminal disulfide knot-II (an analog of the fibrin E1 fragment) for binding to vascular endothelial (VE)-cadherin, thereby preventing transmigration of leukocytes across endothelial cell monolayers. In acute or chronic rat models of myocardial ischemia-reperfusion injury, Bβ15–42 substantially reduces leukocyte infiltration, infarct size and subsequent scar formation. The pathogenic role of fibrinogen products is further confirmed in fibrinogen knockout mice, in which infarct size was substantially smaller than in wild-type animals. Our findings conclude that the interplay of fibrin fragments, leukocytes and VE-cadherin contribute to the pathogenesis of myocardial damage and reperfusion injury. The naturally occurring peptide Bβ15–42 represents a potential candidate for reperfusion therapy in humans.

NOTE: In the HTML version of this paper originally published online, the name of an author was given incorrectly. The correct name for Peter Fried is Peter Friedl. Also, the first affiliation was given incorrectly. The correct affiliation is Department of General Dermatology, Medical University of Vienna, 18-20 Waehringer Guertel, Vienna, 1090, Austria. These errors have been corrected in the HTML version of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fibrin fragments bind to VE-cadherin.
Figure 2: Effects of NDSK-II, NDSK or Bβ15–42 (each 0–200 nM) on (a) adhesion and (b) migration of PBMC across monolayers of HUVEC.
Figure 3: Bβ15–42 reduces leukocyte transmigration.
Figure 4: Determination of infarct size in isolated rat hearts subjected to 20 min of ischemia and 2 h of reperfusion.
Figure 5: Effects of Bβ15–42 during myocardial reperfusion injury.
Figure 6: Determination of infarct size in wild-type and Fgg−/− mice subjected to 20 min of LAD occlusion and 2 h reperfusion.

Similar content being viewed by others

Change history

  • 23 February 2005

    The HTML version was updated with the correct spelling of Author's name and correct affiliation

References

  1. Frangogiannis, N.G., Smith, C.W., & Entman, M.L. The inflammatory response in myocardial infarction. Cardiovasc. Res. 53, 31–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kakkar, A.K. & Lefer, D.J. Leukocyte and endothelial adhesion molecule studies in knockout mice. Curr. Opin. Pharmacol. 4, 154–158 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Muller, W.A., Weigl, S.A., Deng, X., & Phillips, D.M. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 178, 449–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Schenkel, A.R., Mamdouh, Z., Chen, X., Liebman, R.M., & Muller, W.A. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat. Immunol. 3, 143–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Weber, C. Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J. Mol. Med. 81, 4–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Shaw, S.K., Bamba, P.S., Perkins, B.N., & Luscinskas, F.W. Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. J. Immunol. 167, 2323–2330 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Bach, T.L., Barsigian, C., Yaen, C.H., & Martinez, J. Endothelial cell VE-cadherin functions as a receptor for the beta15-42 sequence of fibrin. J Biol. Chem. 273, 30719–30728 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Gorlatov, S. & Medved, L. Interaction of fibrin(ogen) with the endothelial cell receptor VE-cadherin: mapping of the receptor-binding site in the NH2-terminal portions of the fibrin beta chains. Biochemistry 41, 4107–4116 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Chalupowicz, D.G., Chowdhury, Z.A., Bach, T.L., Barsigian, C. & Martinez, J. Fibrin II induces endothelial cell capillary tube formation. J. Cell Biol. 130, 207–215 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Hamaguchi, M., Bunce, L.A., Sporn, L.A., & Francis, C.W. Spreading of platelets on fibrin is mediated by the amino terminus of the beta chain including peptide beta 15-42. Blood 81, 2348–2356 (1993).

    CAS  PubMed  Google Scholar 

  11. Harley, S.L., Sturge, J. & Powell, J.T. Regulation by fibrinogen and its products of intercellular adhesion molecule-1 expression in human saphenous vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 20, 652–658 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Ribes, J.A., Ni, F., Wagner, D.D., & Francis, C.W. Mediation of fibrin-induced release of von Willebrand factor from cultured endothelial cells by the fibrin beta chain. J. Clin. Invest. 84, 435–442 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altieri, D.C., Duperray, A., Plescia, J., Thornton, G.B., & Languino, L.R. Structural recognition of a novel fibrinogen gamma chain sequence (117-133) by intercellular adhesion molecule-1 mediates leukocyte-endothelium interaction. J. Biol. Chem. 270, 696–699 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Yokoyama, K., Zhang, X.P., Medved, L. & Takada, Y. Specific binding of integrin alpha v beta 3 to the fibrinogen gamma and alpha E chain C-terminal domains. Biochemistry 38, 5872–5877 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Altieri, D.C., Plescia, J. & Plow, E.F. The structural motif glycine 190-valine 202 of the fibrinogen gamma chain interacts with CD11b/CD18 integrin (alpha M beta 2, Mac-1) and promotes leukocyte adhesion. J. Biol. Chem. 268, 1847–1853 (1993).

    CAS  PubMed  Google Scholar 

  16. Farrell, D.H., Thiagarajan, P., Chung, D.W., & Davie, E.W. Role of fibrinogen alpha and gamma chain sites in platelet aggregation. Proc. Natl. Acad. Sci. USA 89, 10729–10732 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loike, J.D. et al. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc. Natl. Acad. Sci. USA 88, 1044–1048 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drew, A.F., Liu, H., Davidson, J.M., Daugherty, C.C. & Degen, J.L. Wound-healing defects in mice lacking fibrinogen. Blood 97, 3691–3698 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Drew, A.F. et al. Crescentic glomerulonephritis is diminished in fibrinogen-deficient mice. Am. J. Physiol. Renal. Physiol. 281, F1157–F1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Wilberding, J.A. et al. Development of pulmonary fibrosis in fibrinogen-deficient mice. Ann. NY Acad. Sci. 936, 542–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Palumbo, J.S. et al. Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res. 62, 6966–6972 (2002).

    CAS  PubMed  Google Scholar 

  22. Olexa, S.A., Budzynski, A.Z., Doolittle, R.F., Cottrell, B.A. & Greene, T.C. Structure of fragment E species from human cross-linked fibrin. Biochemistry 20, 6139–6145 (1981).

  23. Vali, Z. & Scheraga, H.A. Localization of the binding site on fibrin for the secondary binding site of thrombin. Biochemistry 27, 1956–1963 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Groger, M. et al. A standardized, a computer-assisted in vitro assay for the assessment of neutrophil transmigration across endothelial monolayers. J. Immunol. Methods 222, 101–109 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Halama, T. et al. PECAM-1 and VE-cadherin cooperatively regulate FGF-induced modulations of adherens junction functions. J. Invest. Dermatol. 116, 67 (2001).

    Google Scholar 

  26. Ferrans, V.J. Morphological methods for evaluation of myocardial protection. Ann. Thorac. Surg. 20, 11–20 (1975).

    Article  CAS  PubMed  Google Scholar 

  27. Koenig, W., Rothenbacher, D., Hoffmeister, A., Griesshammer, M. & Brenner, H. Plasma fibrin D-dimer levels and risk of stable coronary artery disease: results of a large case-control study. Arterioscler. Thromb. Vasc. Biol. 21, 1701–1705 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Schoots, I.G., Levi, M., Roossink, E.H., Bijlsma, P.B., & van Gulik, T.M. Local intravascular coagulation and fibrin deposition on intestinal ischemia-reperfusion in rats. Surgery 133, 411–419 (2003).

    Article  PubMed  Google Scholar 

  29. Erlich, J.H. et al. Inhibition of the tissue factor-thrombin pathway limits infarct size after myocardial ischemia-reperfusion injury by reducing inflammation. Am. J. Pathol. 157, 1849–1862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Sherman, D.G. et al. Intravenous ancrod for treatment of acute ischemic stroke: the STAT study: a randomized controlled trial. Stroke Treatment with Ancrod Trial. JAMA 283, 2395–2403 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Simpson, P.J., Schelm, J.A. & Smith, G.F. Therapeutic defibrination with ancrod does not protect canine myocardium from reperfusion injury. J. Pharmacol. Exp. Ther. 256, 780–786 (1991).

    CAS  PubMed  Google Scholar 

  33. Dempfle, C.E. et al. Analysis of fibrin formation and proteolysis during intravenous administration of ancrod. Blood 96, 2793–2802 (2000).

    CAS  PubMed  Google Scholar 

  34. Kudryk, B. et al. Measurement in human blood of fibrinogen/fibrin fragments containing the B beta 15-42 sequence. Thromb. Res. 25, 277–291 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Harenberg, J., Stehle, G. & Waibel, S. Biodistribution of human fibrinogen derived peptides in rabbits. in Fibrinogen—structure variants and interactions. 271–278 (Walter de Gruyter & Co. Berlin, New York, 1985).

    Google Scholar 

  36. Everse, S.J., Spraggon, G., Veerapandian, L., Riley, M. & Doolittle, R.F. Crystal structure of fragment double-D from human fibrin with two different bound ligands. Biochemistry 37, 8637–8642 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Kostelansky, M.S., Betts, L., Gorkun, O.V. & Lord, S.T. 2.8 A crystal structures of recombinant fibrinogen fragment D with and without two peptide ligands: GHRP binding to the “b” site disrupts its nearby calcium-binding site. Biochemistry 41, 12124–12132 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Lounes, K.C., Ping, L., Gorkun, O.V., & Lord, S.T. Analysis of engineered fibrinogen variants suggests that an additional site mediates platelet aggregation and that “B-b” interactions have a role in protofibril formation. Biochemistry 41, 5291–5299 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Weisel, J.W., Veklich, Y. & Gorkun, O. The sequence of cleavage of fibrinopetides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots. J. Mol. Biol. 232, 285–297 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh, K. Thrombin interaction with fibrin polymerization sites. Thromb. Res. 86, 301–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Hsieh, K. Localization of an effective fibrin beta-chain polymerization site: implications for the polymerization mechanism. Biochemistry 36, 9381–9387 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Furlan, M., Rupp, C., Beck, E.A., & Svendsen, L. Effect of calcium and synthetic peptides on fibrin polymerization. Thromb. Haemost. 47, 118–121 (1982).

    Article  CAS  PubMed  Google Scholar 

  43. Qi, J., Goralnick, S., & Kreutzer, D.L. Fibrin regulation of interleukin-8 gene expression in human vascular endothelial cells. Blood 90, 3595–3602 (1997).

    CAS  PubMed  Google Scholar 

  44. Lalla, R.V., Tanzer, M.L., & Kreutzer, D.L. Identification of a region of the fibrin molecule involved in upregulation of interleukin-8 expression from human oral squamous cell carcinoma cells. Arch. Oral Biol. 48, 263–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Unger, R.E., Krump-Konvalinkova, V., Peters, K. & Kirkpatrick, C.J. In vitro expression of the endothelial phenotype: comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvasc. Res. 64, 384–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Petzelbauer, P., Watson, C.A., Pfau, S.E., & Pober, J.S. IL-8 and angiogenesis: evidence that human endothelial cells lack receptors and do not respond to IL-8 in vitro. Cytokine 7, 267–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Gröger, M. et al. A standardized, a computer-assisted in vitro assay for the assessment of neutrophil transmigration across endothelial monolayers. J. Immunol. Methods 222, 101–109 (1999).

    Article  PubMed  Google Scholar 

  48. Zacharowski, K. et al. Selective activation of the prostanoid EP(3) receptor reduces myocardial infarct size in rodents. Arterioscler. Thromb. Vasc. Biol. 19, 2141–2147 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Ploplis, V.A. et al. A total fibrinogen deficiency is compatible with the development of pulmonary fibrosis in mice. Am. J. Pathol. 157, 703–708 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Austrian Science Foundation (P15099 to P.P.), the Stavros Niarchos foundation (to K.W.) and the Deutsche Forschungsgemeinschaft (Za243/8-1 to K.Z.). We wish to thank the following persons: B. Binder of the Institute of Vascular Biology and Thrombosis Research, School of Medicine, University of Vienna, for providing NDSK; U.M. Losert and the staff of the Biomedical Sciences Center, School of Medicine, University of Vienna. Also A. Treiber, M. Sager and the staff of the Biological Sciences Unit, University Hospital of Dusseldorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zacharowski.

Ethics declarations

Competing interests

Peter Petzelbauer is a founder of a pharmaceutical company (Fibrex Medical R&D), which owns the rights to commercialize peptide Bβ15-42 for therapeutic use. Parts of the surgical equipment have been provided by Fibrex Medical R&D.

Supplementary information

Supplementary Fig. 1

AR of isolated rat hearts subjected to myocardial ischemia/reperfusion. (PDF 43 kb)

Supplementary Fig. 2

AR of rat hearts subjected to acute myocardial ischemia/reperfusion. (PDF 32 kb)

Supplementary Fig. 3

AR of rat hearts subjected to chronic myocardial ischemia/reperfusion. (PDF 81 kb)

Supplementary Fig. 4

AR of mice hearts subjected to acute myocardial ischemia/reperfusion. (PDF 37 kb)

Supplementary Table 1

Effects of Bβ15-42 on clotting parameters in the rat (n = 3/group). (PDF 40 kb)

Supplementary Methods (PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzelbauer, P., Zacharowski, P., Miyazaki, Y. et al. The fibrin-derived peptide Bβ15–42 protects the myocardium against ischemia-reperfusion injury. Nat Med 11, 298–304 (2005). https://doi.org/10.1038/nm1198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing