Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology of valvular heart disease in the adult

Abstract

Valvular heart disease remains common in industrialized countries, because the decrease in prevalence of rheumatic heart diseases has been accompanied by an increase in that of degenerative valve diseases. Aortic stenosis and mitral regurgitation are the two most common types of valvular disease in Europe. The prevalence of valvular disease increases sharply with age, owing to the predominance of degenerative etiologies. The burden of heart valve disease in the elderly has an important impact on patient management, given the high frequency of comorbidity and the increased risk associated with intervention in this age group. Endocarditis is an important etiology of valvular disease and is most commonly caused by Staphylococci. Rheumatic heart disease remains prevalent in developing countries.

Key Points

  • The prevalence of valvular heart disease is estimated at 2.5% in the US population and sharply increases after the age of 65 years owing to the predominance of degenerative etiologies

  • The term 'degenerative' valvular disease relates to a heterogeneous group of conditions the main characteristic of which is an increase in prevalence with age, rendering decision-making for interventions complex

  • Rheumatic heart disease remains common in developing countries, where its prevalence is underestimated by clinical examination and is estimated at 2–3% when using systematic echocardiographic screening

  • Patients who have previously undergone surgery account for almost a third of those referred for the management of valvular disease

  • The proportion of valvular surgeries has increased over the past decade and these procedures now account for more than 20% of all cardiac surgeries

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevalence of moderate or severe aortic and mitral valve diseases according to age from a population-based series of 11,911 patients.
Figure 2: Distribution of the various types of native valvular heart disease in 3,547 patients in the Euro Heart Survey.
Figure 3: Prevalence of rheumatic heart disease in children aged 5–14 years.
Figure 4: Prevalence of moderate aortic stenosis according to age from three population-based series.
Figure 5: Aortic valve structure (number of cusps) at the time of explant for aortic stenosis in adults.43
Figure 6: Prevalence of mild and moderate mitral and aortic regurgitations according to age from a population-based series of 2,881 patients.48

Similar content being viewed by others

References

  1. Soler-Soler, J. & Galve, E. Worldwide perspective of valve disease. Heart 83, 721–725 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005).

    PubMed  Google Scholar 

  3. Vahanian, A. et al. Guidelines on the management of valvular heart disease: The Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur. Heart J. 28, 230–268 (2007).

    PubMed  Google Scholar 

  4. Bonow, R. O. et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 52, e1–e142 (2008).

    PubMed  Google Scholar 

  5. Desjardins, V. A., Enriquez-Sarano, M., Tajik, A. J., Bailey, K. R. & Seward, J. B. Intensity of murmurs correlates with severity of valvular regurgitation. Am. J. Med. 100, 149–156 (1996).

    CAS  PubMed  Google Scholar 

  6. Baumgartner, H. et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur. J. Echocardiogr. 10, 1–25 (2009).

    PubMed  Google Scholar 

  7. Lancellotti, P. et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 1: aortic and pulmonary regurgitation (native valve disease). Eur. J. Echocardiogr. 11, 223–244 (2010).

    PubMed  Google Scholar 

  8. Lancellotti, P. et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur. J. Echocardiogr. 11, 307–332 (2010).

    PubMed  Google Scholar 

  9. Nkomo, V. T. et al. Burden of valvular heart diseases: a population-based study. Lancet 368, 1005–1011 (2006).

    PubMed  Google Scholar 

  10. Iung, B. et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 24, 1231–1243 (2003).

    PubMed  Google Scholar 

  11. Iung, B. et al. Valvular heart disease in the community: a European experience. Curr. Probl. Cardiol. 32, 609–661 (2007).

    PubMed  Google Scholar 

  12. Zoghbi, W. A. et al. for the American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J. Am. Soc. Echocardiogr. 16, 777–802 (2003).

    PubMed  Google Scholar 

  13. Hull, M. C., Morris, C. G., Pepine, C. J. & Mendenhall, N. P. Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of Hodgkin lymphoma treated with radiation therapy. JAMA 290, 2831–2837 (2003).

    CAS  PubMed  Google Scholar 

  14. Droogmans, S., Kerkhove, D., Cosyns, B. & Van Camp, G. Role of echocardiography in toxic heart valvulopathy. Eur. J. Echocardiogr. 10, 467–476 (2009).

    PubMed  Google Scholar 

  15. Kamblock, J. et al. Acute severe mitral regurgitation during first attacks of rheumatic fever: clinical spectrum, mechanisms and prognostic factors. J. Heart Valve Dis. 14, 440–446 (2005).

    PubMed  Google Scholar 

  16. Tibazarwa, K. B., Volmink, J. A. & Mayosi, B. M. Incidence of acute rheumatic fever in the world: a systematic review of population-based studies. Heart 94, 1534–1540 (2008).

    CAS  PubMed  Google Scholar 

  17. Carapetis, J. R., Currie, B. J. & Mathews, J. D. Cumulative incidence of rheumatic fever in an endemic region: a guide to the susceptibility of the population? Epidemiol. Infect. 124, 239–244 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaplan, E. L. Pathogenesis of acute rheumatic fever and rheumatic heart disease: evasive after half a century of clinical, epidemiological, and laboratory investigation. Heart 91, 3–4 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rizvi, S. F. et al. Status of rheumatic heart disease in rural Pakistan. Heart 90, 394–399 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Carapetis, J. R. Rheumatic heart disease in Asia. Circulation 118, 2748–2753 (2008).

    PubMed  Google Scholar 

  21. McLaren, M. J. et al. Epidemiology of rheumatic heart disease in black shcoolchildren of Soweto, Johannesburg. BMJ 3, 474–478 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Essop, M. R. & Nkomo, V. T. Rheumatic and nonrheumatic valvular heart disease: epidemiology, management, and prevention in Africa. Circulation 112, 3584–3591 (2005).

    PubMed  Google Scholar 

  23. Marijon, E. et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N. Engl. J. Med. 357, 470–476 (2007).

    CAS  PubMed  Google Scholar 

  24. Bouma, B. J. et al. To operate or not on elderly patients with aortic stenosis: the decision and its consequences. Heart 82, 143–148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stewart, B. F. et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J. Am. Coll.Cardiol. 29, 630–634 (1997).

    CAS  PubMed  Google Scholar 

  26. Lindroos, M., Kupari, M., Heikkilä, J. & Tilvis, R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J. Am. Coll. Cardiol. 21, 1220–1225 (1993).

    CAS  PubMed  Google Scholar 

  27. Iung, B. Management of the elderly patient with aortic stenosis. Heart 94, 519–524 (2008).

    PubMed  Google Scholar 

  28. Probst, V. et al. Familial aggregation of calcific aortic valve stenosis in the western part of France. Circulation 113, 856–860 (2006).

    PubMed  Google Scholar 

  29. Parolari, A. et al. Nonrheumatic calcific aortic stenosis: an overview from basic science to pharmacological prevention. Eur. J. Cardiothorac. Surg. 35, 493–504 (2009).

    PubMed  Google Scholar 

  30. Cosmi, J. E. et al. The risk of the development of aortic stenosis in patients with “benign” aortic valve thickening. Arch. Intern. Med. 162, 2345–2347 (2002).

    PubMed  Google Scholar 

  31. Chan, K. L., Ghani, M., Woodend, K. & Burwash, I. G. Case-controlled study to assess risk factors for aortic stenosis in congenitally bicuspid aortic valve. Am. J. Cardiol. 88, 690–693 (2001).

    CAS  PubMed  Google Scholar 

  32. Palta, S., Pai, A. M., Gill, K. S. & Pai, R. G. New insights into the progression of aortic stenosis: implications for secondary prevention. Circulation 101, 2497–2502 (2000).

    CAS  PubMed  Google Scholar 

  33. Lester, S. J. et al. Rate of change in aortic valve area during a cardiac cycle can predict the rate of hemodynamic progression of aortic stenosis. Circulation 101, 1947–1952 (2000).

    CAS  PubMed  Google Scholar 

  34. Rossebø, A. B. et al. for the SEAS Investigators. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 359, 1343–1356 (2008).

    PubMed  Google Scholar 

  35. Chan, K. L., Teo, K., Dumesnil, J. G., Ni, A. & Tam, J. for the ASTRONOMER Investigators. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 121, 306–314 (2010).

    CAS  PubMed  Google Scholar 

  36. Cowell, S. J. et al. for the SALTIRE Investigators. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 352, 2389–2397 (2005).

    CAS  PubMed  Google Scholar 

  37. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    CAS  PubMed  Google Scholar 

  38. Tutar, E., Ekici, F., Atalay, S. & Nacar, N. The prevalence of bicuspid aortic valve in newborns by echocardiographic screening. Am. Heart J. 150, 513–515 (2005).

    PubMed  Google Scholar 

  39. Nistri, S., Basso, C., Marzari, C., Mormino, P. & Thiene, G. Frequency of bicuspid aortic valve in young male conscripts by echocardiogram. Am. J. Cardiol. 96, 718–721 (2005).

    PubMed  Google Scholar 

  40. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121, e46–e215 (2010).

    PubMed  Google Scholar 

  41. Tzemos, N. et al. Outcomes in adults with bicuspid aortic valves. JAMA 300, 1317–1325 (2008).

    CAS  PubMed  Google Scholar 

  42. Michelena, H. I. et al. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation 117, 2776–2784 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Roberts, W. C. & Ko, J. M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111, 920–925 (2005).

    PubMed  Google Scholar 

  44. Sievers, H. H. & Schmidtke, C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J. Thorac. Cardiovasc. Surg. 133, 1226–1233 (2007).

    PubMed  Google Scholar 

  45. Davies, R. R. et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann. Thorac. Surg. 83, 1338–1344 (2007).

    PubMed  Google Scholar 

  46. Dare, A. J., Veinot, J. P., Edwards, W. D., Tazelar, H. D & Schaff, H. V. New observations on the etiology of aortic valve disease: a surgical pathologic study of 236 cases from 1990. Hum. Pathol. 24, 1330–1338 (1993).

    CAS  PubMed  Google Scholar 

  47. Borer, J. S. et al. Prediction of indications for valve replacement among asymptomatic or minimally symptomatic patients with chronic aortic regurgitation and normal left ventricular performance. Circulation 97, 525–534 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh, J. P. et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am. J. Cardiol. 83, 897–902 (1999).

    CAS  PubMed  Google Scholar 

  49. Reid, C. L., Anton-Culver, H., Yunis, C. & Gardin, J. M. Prevalence and clinical correlates of isolated mitral, isolated aortic regurgitation, and both in adults aged 21 to 35 years (from the CARDIA study). Am. J. Cardiol. 99, 830–834 (2007).

    PubMed  Google Scholar 

  50. Underwood, M. J., El Khoury, G., Deronck, D., Glineur, D. & Dion, R. The aortic root: structure, function, and surgical reconstruction. Heart 83, 376–380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. le Polain de Waroux, J. B. et al. Functional anatomy of aortic regurgitation: accuracy, prediction of surgical repairability, and outcome implications of transesophageal echocardiography. Circulation 116, I264–I269 (2007).

    PubMed  Google Scholar 

  52. Padial, L. R. et al. Doppler echocardiographic assessment of progression of aortic regurgitation. Am. J. Cardiol. 80, 306–314 (1997).

    CAS  PubMed  Google Scholar 

  53. Roberts, W. C., Ko, J. M., Moore, T. R. & Jones, W. H. 3rd Causes of pure aortic regurgitation in patients having isolated aortic valve replacement at a single US tertiary hospital (1993 to 2005). Circulation 114, 422–429 (2006).

    PubMed  Google Scholar 

  54. Chandrashekhar, Y., Westaby, S. & Narula, J. Mitral stenosis. Lancet 374, 1271–1283 (2009).

    CAS  PubMed  Google Scholar 

  55. Gordon, S. P., Douglas, P. S., Come, P. C. & Manning, W. J. Two-dimensional and Doppler echocardiographic determinants of the natural history of mitral valve narrowing in patients with rheumatic mitral stenosis: implications for follow-up. J. Am. Coll. Cardiol. 19, 968–973 (1992).

    CAS  PubMed  Google Scholar 

  56. Abdel-Hady, E. S. et al. Maternal and perinatal outcome of pregnancies complicated by cardiac disease. Int. J. Gynaecol. Obstet. 90, 21–25 (2005).

    PubMed  Google Scholar 

  57. Pressman, G. S., Agarwal, A., Braitman, L. E. & Muddassir, S. M. Mitral annular calcium causing mitral stenosis. Am. J. Cardiol. 105, 389–391 (2010).

    CAS  PubMed  Google Scholar 

  58. Croft, L. B. et al. Age-related prevalence of cardiac valvular abnormalities warranting infectious endocarditis prophylaxis. Am. J. Cardiol. 94, 386–389 (2004).

    PubMed  Google Scholar 

  59. Avierinos, J. F. et al. Natural history of asymptomatic mitral valve prolapse in the community. Circulation 106, 1355–1361 (2002).

    PubMed  Google Scholar 

  60. Freed, L. A. et al. Prevalence and clinical outcome of mitral-valve prolapse. N. Engl. J. Med. 341, 1–7 (1999).

    CAS  PubMed  Google Scholar 

  61. Rabkin, E. et al. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104, 2525–2532 (2001).

    CAS  PubMed  Google Scholar 

  62. Barber, J. E. et al. Mechanical properties of myxomatous mitral valves. J. Thorac. Cardiovasc. Surg. 122, 955–962 (2001).

    CAS  PubMed  Google Scholar 

  63. Kyndt, F. et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation 115, 40–49 (2007).

    CAS  PubMed  Google Scholar 

  64. Avierinos, J. F., Detaint, D., Messika-Zeitoun, D., Mohty, D. & Enriquez-Sarano, M. Risk, determinants, and outcome implications of progression of mitral regurgitation after diagnosis of mitral valve prolapse in a single community. Am. J. Cardiol. 101, 662–667 (2008).

    PubMed  Google Scholar 

  65. Barasch, E. et al. Clinical significance of calcification of the fibrous skeleton of the heart and aortosclerosis in community dwelling elderly. The Cardiovascular Health Study (CHS). Am. Heart J. 151, 39–47 (2006).

    PubMed  Google Scholar 

  66. Bursi, F. et al. Heart failure and death after myocardial infarction in the community: the emerging role of mitral regurgitation. Circulation 111, 295–301 (2005).

    PubMed  Google Scholar 

  67. Grigioni, F., Enriquez-Sarano, M., Zehr, K. J., Bailey, K. R. & Tajik, A. J. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 103, 1759–1764 (2001).

    CAS  PubMed  Google Scholar 

  68. Møller, J. E. et al. Prognosis of carcinoid heart disease: analysis of 200 cases over two decades. Circulation 112, 3320–3327 (2005).

    PubMed  Google Scholar 

  69. Hoen, B. et al. for the AEPEI Study Group. Changing profile of infective endocarditis: results of a 1-year survey in France. JAMA 288, 75–81 (2002).

    PubMed  Google Scholar 

  70. Tleyjeh, I. M. et al. A systematic review of population-based studies of infective endocarditis. Chest 132, 1025–1035 (2007).

    PubMed  Google Scholar 

  71. Murdoch, D. R. et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch. Intern. Med. 169, 463–473 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. Tornos, P. et al. Infective endocarditis in Europe: lessons from the Euro Heart Survey. Heart 91, 571–575 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sy, R. W. & Kritharides, L. Health care exposure and age in infective endocarditis: results of a contemporary population-based profile of 1,536 patients in Australia. Eur. Heart J. 31, 1890–1897 (2010).

    PubMed  Google Scholar 

  74. Duval, X. & Leport, C. Prophylaxis of infective endocarditis: current tendencies, continuing controversies. Lancet Infect. Dis. 8, 225–232 (2008).

    CAS  PubMed  Google Scholar 

  75. Habib, G. et al. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur. Heart J. 30, 2369–2413 (2009).

    PubMed  Google Scholar 

  76. The Society of Thoracic Surgeons. Adult Cardiac Surgery Database, Executive Summary, 10 years STS report—period ending 12/31/2009 [online], (2010).

  77. Brown, J. M. et al. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 137, 82–90 (2009).

    PubMed  Google Scholar 

  78. Gammie, J. S. et al. Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 87, 1431–1437 (2009).

    PubMed  Google Scholar 

  79. Vahanian, A. & Palacios, I. F. Percutaneous approaches to valvular disease. Circulation 109, 1572–1579 (2004).

    PubMed  Google Scholar 

  80. Iung, B. et al. Temporal trends in percutaneous mitral commissurotomy over a 15-year period. Eur. Heart J. 25, 701–707 (2004).

    PubMed  Google Scholar 

  81. Marijon, E. et al. What are the differences in presentation of candidates for percutaneous mitral commissurotomy across the world and do they influence the results of the procedure? Arch. Cardiovasc. Dis. 101, 611–617 (2008).

    PubMed  Google Scholar 

  82. Rodés-Cabau, J. et al. Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk: acute and late outcomes of the multicenter Canadian experience. J. Am. Coll. Cardiol. 55, 1080–1090 (2010).

    PubMed  Google Scholar 

  83. Thomas, M. et al. Thirty-day results of the SAPIEN aortic Bioprosthesis European Outcome (SOURCE) Registry: A European registry of transcatheter aortic valve implantation using the Edwards SAPIEN valve. Circulation 122, 62–69 (2010).

    PubMed  Google Scholar 

  84. Himbert, D. et al. Results of transfemoral or transapical aortic valve implantation following a uniform assessment in high-risk patients with aortic stenosis. J. Am. Coll. Cardiol. 54, 303–311 (2009).

    PubMed  Google Scholar 

  85. Vahanian, A. et al. Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European association of cardio-thoracic surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI). EuroIntervention 4, 193–199 (2008).

    PubMed  Google Scholar 

  86. Feldman, T. et al. for the EVEREST Investigators. Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort. J. Am. Coll. Cardiol. 54, 686–694 (2009).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B. Iung researched data for the article, contributed to the discussion of content, wrote the article, and reviewed and edited the manuscript before submission and after peer review. A. Vahanian contributed to the discussion of content, and reviewed and edited the manuscript before submission and after peer review.

Corresponding author

Correspondence to Bernard Iung.

Ethics declarations

Competing interests

B. Iung has acted as a Consultant for Boehringer-Ingelheim and Servier, and he has received Speakers' Bureau honoraria from Edwards Lifesciences, St. Jude Medical, and Valtech. A. Vahanian has acted as a Consultant for Edwards Lifesciences and Medtronic and he has received Speakers' Bureau honoraria from Abbott and Valtech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iung, B., Vahanian, A. Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol 8, 162–172 (2011). https://doi.org/10.1038/nrcardio.2010.202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing