Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anomalous origination of a coronary artery from the opposite sinus

Abstract

Anomalous origination of a coronary artery from the opposite sinus (ACAOS) is estimated to be present in 0.2–2.0% of the population. In the majority of individuals, ACAOS has no hemodynamic or prognostic implications, but in a minority of cases, typically where the anomalous coronary artery takes an interarterial course to reach its correct myocardial territory, it can precipitate ischemia and sudden cardiac death (SCD). With the growing use of CT coronary angiography (CTCA) in the investigation of ischemic heart disease, we can expect increasing rates of incidental detection of this anomaly. Although CTCA and magnetic resonance coronary angiography can effectively characterize these lesions anatomically, they fail to describe and quantitatively assess the basic defect that leads to coronary insufficiency, such as mural intussusception. The key challenge lies in the identification of which patients are at risk of SCD and, therefore, who should be offered corrective surgical or (potentially) percutaneous intervention. Conventional, noninvasive stress testing has limited sensitivity, but emerging, invasive stress tests, which utilize intravascular ultrasonography and measurements of fractional flow reserve, show the potential to provide more-accurate hemodynamic and prognostic assessment.

Key Points

  • Anomalous origination of a coronary artery from the opposite sinus (ACAOS) is a recognized cause of sudden cardiac death (SCD), typically associated with exercise

  • Insights from intravascular ultrasonography (IVUS) studies suggest that the pathophysiological mechanism by which ACAOS causes SCD involves systolic compression of the anomalous artery within the aortic wall

  • Cardiac catheterization was regarded as the gold standard for diagnosis and anatomical characterization of ACAOS, but has been superseded by CT and magnetic resonance coronary angiography

  • Standard, noninvasive stress tests have limited sensitivity in predicting the risk of SCD in patients with ACAOS

  • Invasive stress tests using IVUS and measurements of fractional flow reserve might provide a means of establishing the hemodynamic and prognostic significance of ACAOS

  • Case reports of successful percutaneous coronary intervention for treatment of ACAOS exist, but surgery remains the first-line treatment of choice

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anomalous origination of the left coronary artery from the right coronary sinus: variations in the course of the anomalous artery.
Figure 2: CT coronary angiograms of anomalous origination of a coronary artery from the opposite sinus.
Figure 3: Two options for surgical repair of ACAOS with an intramural course.
Figure 4: Proposed algorithm for assessment and management of patients with ACAOS.

Similar content being viewed by others

References

  1. Angelini, P., Velasco, J. A. & Flamm, S. Coronary anomalies: incidence, pathophysiology, and clinical relevance. Circulation 105, 2449–2454 (2002).

    PubMed  Google Scholar 

  2. Hauser, M. Congenital anomalies of the coronary arteries. Heart 91, 1240–1245 (2005).

    PubMed  PubMed Central  Google Scholar 

  3. Angelini, P. Coronary artery anomalies: an entity in search of an identity. Circulation 115, 1296–1305 (2007).

    PubMed  Google Scholar 

  4. Sundaram, B., Kreml, R. & Patel, S. Imaging of coronary artery anomalies. Radiol. Clin. North Am. 48, 711–727 (2010).

    PubMed  Google Scholar 

  5. Angelini, P. in Sports Cardiology (ed. Lawless, C. E.) 277–298 (Springer, New York, 2010).

    Google Scholar 

  6. Cooper, A. et al. Chest pain of recent onset: Assessment and diagnosis of recent onset chest pain or discomfort of suspected cardiac origin. Full guideline. National Institute for Health and Clinical Excellence [online], (2010).

    Google Scholar 

  7. Edwards, J. E. Anomalous coronary arteries with special reference to arteriovenous-like communications. Circulation 17, 1001–1006 (1958).

    CAS  PubMed  Google Scholar 

  8. Blake, H. A. et al. Coronary artery anomalies. Circulation 30, 927–934 (1964).

    CAS  PubMed  Google Scholar 

  9. Cheitlin, M. D., De Castro, C. M. & McAllister, H. A. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva, a not-so-minor congenital anomaly. Circulation 50, 780–787 (1974).

    CAS  PubMed  Google Scholar 

  10. Yamanaka, O. & Hobbs, R. E. Coronary artery anomalies in 126,595 patients undergoing coronary angiography. Cathet. Cardiovasc. Diagn. 21, 28–40 (1990).

    CAS  PubMed  Google Scholar 

  11. Angelini, P., Villason, S., Chan, A. V. & Diez J. G. in Coronary Artery Anomalies (ed. Angelini, P.) 27–79 (Lippincott Williams & Wilkins, Chicago, 1999).

    Google Scholar 

  12. Kim, S. Y. et al. Coronary artery anomalies: classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiographics 26, 317–333 (2006).

    PubMed  Google Scholar 

  13. Frommelt, P. C., Sheridan, D. C., Berger, S., Frommelt, M. A. & Tweddell, J. S. Ten-year experience with surgical unroofing of anomalous aortic origin of a coronary artery from the opposite sinus with an interarterial course. J. Thorac Cardiovasc. Surg. http://dx.doi.org/10.1016/j.jtcvs.2011.02.004.

  14. Cheitlin, M. D. & MacGregor, J. Congenital anomalies of coronary arteries: role in the pathogenesis of sudden cardiac death. Herz. 34, 268–279 (2009).

    PubMed  Google Scholar 

  15. Yildiz, A. et al. Prevalence of coronary artery anomalies in 12,457 adult patients who underwent coronary angiography. Clin. Cardiol. 33, E60–E64 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Correia, E. et al. Prevalence of anomalous origin of coronary arteries: a retrospective study in a Portuguese population. Rev. Port. Cardiol. 29, 221–229 (2010).

    PubMed  Google Scholar 

  17. Eid, A. H., Itani, Z., Al-Tannir, M., Sayegh, S. & Samaha, A. Primary congenital anomalies of the coronary arteries and relation to atherosclerosis: an angiographic study in Lebanon. J. Cardiothorac. Surg. 4, 58 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Ouali, S. et al. Congenital anomalous aortic origins of the coronary arteries in adults: a Tunisian coronary arteriography study. Arch. Cardiovasc. Dis. 102, 201–208 (2009).

    PubMed  Google Scholar 

  19. Aydinlar, A. et al. Primary congenital anomalies of the coronary arteries: a coronary arteriographic study in Western Turkey. Int. Heart J. 46, 97–103 (2005).

    PubMed  Google Scholar 

  20. Mavi, A. et al. Frequency in the anomalous origin of the left main coronary artery with angiography in a Turkish population. Acta Med. Okayama 58, 17–22 (2004).

    PubMed  Google Scholar 

  21. Rigatelli, G. et al. Congenital coronary artery anomalies angiographic classification revisited. Int. J. Cardiovasc. Imaging 19, 361–366 (2003).

    PubMed  Google Scholar 

  22. Harikrishnan, S. et al. Congenital coronary anomalies of origin and distribution in adults: a coronary arteriographic study. Indian Heart J. 54, 271–275 (2002).

    CAS  PubMed  Google Scholar 

  23. Ayalp, R., Mavi, A., Serçelik, A., Batyraliev, T. & Gümüsburun, E. Frequency in the anomalous origin of the right coronary artery with angiography in a Turkish population. Int. J. Cardiol. 82, 253–257 (2002).

    PubMed  Google Scholar 

  24. Garg, N., Tewari, S., Kapoor, A., Gupta, D. K. & Sinha, N. Primary congenital anomalies of the coronary arteries: a coronary: arteriographic study. Int. J. Cardiol. 74, 39–46 (2000).

    CAS  PubMed  Google Scholar 

  25. Kardos, A. et al. Epidemiology of congenital coronary artery anomalies: a coronary arteriography study on a central European population. Cathet. Cardiovasc. Diagn. 42, 270–275 (1997).

    CAS  PubMed  Google Scholar 

  26. Wilkins, C. E. et al. Coronary artery anomalies: a review of more than 10,000 patients from the Clayton Cardiovascular Laboratories. Tex. Heart Inst. J. 15, 166–173 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, L. J. et al. Incidence of anomalous origin of coronary artery in 1879 Chinese adults on dual-source CT angiography. Neth. Heart J. 18, 466–470 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng, Z. et al. Detection of coronary artery anomalies by dual-source CT coronary angiography. Clin. Radiol. 65, 815–822 (2010).

    CAS  PubMed  Google Scholar 

  29. von Ziegler, F. Visualization of anomalous origin and course of coronary arteries in 748 consecutive symptomatic patients by 64-slice computed tomography angiography. BMC Cardiovasc. Disord. 9, 54 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Kos¸ar, P., Ergun, E., Oztürk, C. & Kos¸ar, U. Anatomic variations and anomalies of the coronary arteries: 64-slice CT angiographic appearance. Diagn. Interv. Radiol. 15, 275–283 (2009).

    Google Scholar 

  31. Duran, C. et al. Remarkable anatomic anomalies of coronary arteries and their clinical importance: a multidetector computed tomography angiographic study. J. Comput. Assist. Tomogr. 30, 939–948 (2006).

    PubMed  Google Scholar 

  32. Sato, Y. et al. Detection of anomalous origins of the coronary artery by means of multislice computed tomography. Circ. J. 69, 320–324 (2005).

    PubMed  Google Scholar 

  33. Schmitt, R. et al. Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography. Eur. Radiol. 15, 1110–1121 (2005).

    PubMed  Google Scholar 

  34. Maron, B. J. et al. Sudden death in young competitive athletes: clinical, demographic, and pathological profiles. JAMA 276, 199–204 (1996).

    CAS  PubMed  Google Scholar 

  35. Eckart, R. E. et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann. Intern. Med. 141, 829–834 (2004).

    PubMed  Google Scholar 

  36. Basso, C., Maron, B. J., Corrado, D. & Thiene, G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J. Am. Coll. Cardiol. 35, 1493–1501 (2000).

    CAS  PubMed  Google Scholar 

  37. Taylor, A. J., Rogan, K. M. & Virmani, R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J. Am. Coll. Cardiol. 20, 640–647 (1992).

    CAS  PubMed  Google Scholar 

  38. Kragel, A. H. & Roberts, W. C. Anomalous origin of either the right or left main coronary artery from the aorta with subsequent coursing between aorta and pulmonary trunk: analysis of 32 necropsy cases. Am. J. Cardiol. 62, 771–777 (1988).

    CAS  PubMed  Google Scholar 

  39. Roberts, W. C., Siegel, R. J. & Zipes, D. P. Origin of the right coronary artery from the left sinus of Valsalva and its functional consequences: analysis of 10 necropsy patients. Am. J. Cardiol. 49, 863–868 (1982).

    CAS  PubMed  Google Scholar 

  40. Cox, I. D., Bunce, N. & Fluck, D. S. Failed sudden cardiac death in a patient with an anomalous origin of the right coronary artery. Circulation 102, 1461–1462 (2000).

    CAS  PubMed  Google Scholar 

  41. Chaitman, B. R., Lesperance, J., Saltiel, J. & Bourassa, M. G. Clinical, angiographic, and hemodynamic findings in patients with anomalous origin of the coronary arteries. Circulation 53, 122–131 (1976).

    CAS  PubMed  Google Scholar 

  42. Frommelt, P. C., Frommelt, M. A., Tweddell, J. S. & Jaquiss, R. D. Prospective echocardiographic diagnosis and surgical repair of anomalous origin of a coronary artery from the opposite sinus with an interarterial course. J. Am. Coll. Cardiol. 42, 148–154 (2003).

    PubMed  Google Scholar 

  43. Angelini, P., Walmsley, R. P., Libreros, A. & Ott, D. A. Symptomatic anomalous origination of the left Coronary artery from the opposite sinus of Valsalva: Clinical presentations, diagnosis, and surgical repair. Tex. Heart Inst. J. 33, 171–179 (2006).

    PubMed  PubMed Central  Google Scholar 

  44. Angelini, P., Walmsley, R., Cheong, B. Y. & Ott, D. A. Left main coronary artery originating from the proper sinus but with acute angulation and an intramural course, leading to critical stenosis. Tex. Heart Inst. J. 37, 221–225 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Davis, J. A., Cecchin, F., Jones, T. K. & Portman, M. A. Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J. Am. Coll. Cardiol. 37, 593–597 (2001).

    CAS  PubMed  Google Scholar 

  46. Manghat, N. E., Morgan-Hughes, G. J., Marshall, A. J. & Roobottom, C. A. Multidetector row computed tomography: imaging congenital coronary artery anomalies in adults. Heart 91, 1515–1522 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bluemke, D. A. et al. Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention, and the Councils on Clinical Cardiology and Cardiovascular Disease in the Young. Circulation 118, 586–606 (2008).

    PubMed  Google Scholar 

  48. Zeina, A. R., Blinder, J., Sharif, D., Rosenschein, U. & Barmeir, E. Congenital coronary artery anomalies in adults: non-invasive assessment with multidetector CT. Br. J. Radiol. 82, 254–261 (2009).

    CAS  PubMed  Google Scholar 

  49. Schroeder, S. et al. Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur. Heart J. 29, 531–556 (2008).

    PubMed  Google Scholar 

  50. Ropers, D. et al. Visualization of coronary artery anomalies and their anatomic course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am. J. Cardiol. 87, 193–197 (2001).

    CAS  PubMed  Google Scholar 

  51. Deibler, A. R., Kuzo, R. S., Vohringer, M. et al. Imaging of congenital anomalies with multislice computed tomography. Mayo Clin. Proc. 79, 1017–1023 (2004).

    PubMed  Google Scholar 

  52. Schmid, M. et al. Visualization of coronary artery anomalies by contrast-enhanced multi-detector row spiral computed tomography. Int. J. Cardiol. 111, 430–435 (2006).

    PubMed  Google Scholar 

  53. Datta, J. et al. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology 235, 812–818 (2005).

    PubMed  Google Scholar 

  54. Shi, H., Aschoff, A. J., Brambs, H. J. & Hoffmann, M. H. Multislice CT imaging of anomalous coronary arteries. Eur. Radiol. 14, 2172–2181 (2004).

    PubMed  Google Scholar 

  55. Morin, R. L., Gerber, T. C. & McCollough, C. H. Radiation dose in computed tomography of the heart. Circulation 107, 917–922 (2003).

    PubMed  Google Scholar 

  56. Mettler, F. A., Jr, Huda, W., Yoshizumi, T. T. & Mahesh, M. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248, 254–263 (2008).

    PubMed  Google Scholar 

  57. Mollet, N. R. et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112, 2318–2323 (2005).

    PubMed  Google Scholar 

  58. Husmann, L. et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur. Heart J. 29, 191–197 (2008).

    PubMed  Google Scholar 

  59. Herzog, B. A. et al. First head-to-head comparison of effective radiation dose from low-dose 64-slice CT with prospective ECG-triggering versus invasive coronary angiography. Heart 95, 1656–1661 (2009).

    CAS  PubMed  Google Scholar 

  60. Gosling, O. et al. Cardiac CT: are we underestimating the dose? A radiation dose study utilizing the 2007 ICRP tissue weighting factors and a cardiac specific scan volume. Clin. Radiol. 65, 1013–1017 (2010).

    CAS  PubMed  Google Scholar 

  61. Morcos, S. K. & Thomsen, H. S. Adverse reactions to iodinated contrast media. Eur. Radiol. 11, 1267–1275 (2001).

    CAS  PubMed  Google Scholar 

  62. Post, J. C. et al. Magnetic resonance angiography of anomalous coronary arteries: a new gold standard for delineating the proximal course? Circulation 92, 3163–3171 (1995).

    CAS  PubMed  Google Scholar 

  63. McConnell, M. V. et al. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation 92, 3158–3162 (1995).

    CAS  PubMed  Google Scholar 

  64. Bunce, N. H. et al. Coronary artery anomalies: assessment with free-breathing three-dimensional coronary MR angiography. Radiology 227, 201–208 (2003).

    PubMed  Google Scholar 

  65. Erez, E., Tam, V. K., Doublin, N. A. & Stakes, J., Anomalous coronary artery with aortic origin and course between the great arteries: improved diagnosis, anatomic findings, and surgical treatment. Ann. Thorac. Surg. 82, 973–977 (2006).

    PubMed  Google Scholar 

  66. Brothers, J. A. et al. Evaluation of myocardial ischemia after surgical repair of anomalous aortic origin of a coronary artery in a series of pediatric patients. J. Am. Coll. Cardiol. 50, 2078–2082 (2007).

    PubMed  Google Scholar 

  67. Osaki, M., McCrindle, B. W., Van Arsdell, G. & Dipchand, A. I. Anomalous origin of a coronary artery from the opposite sinus of Valsalva with an interarterial course: clinical profile and approach to management in the pediatric population. Pediatr. Cardiol. 29, 24–30 (2008).

    CAS  PubMed  Google Scholar 

  68. Morucutti, G. et al. Radionuclide evidence for reversible ischemia after percutaneous treatment of anomalous right coronary artery with dynamic compression by great vessels. J. Cardiovasc. Med. (Hagerstown). 9, 1134–1137 (2008).

    Google Scholar 

  69. Cohenpour, M. et al. Anomalous origin of left main coronary artery: the value of myocardial scintigraphic and spiral computed tomography scans. Nucl. Med. Rev. Cent. East. Eur. 9, 69–71 (2006).

    PubMed  Google Scholar 

  70. De Luca, L. et al. Stress-rest myocardial perfusion SPECT for functional assessment of coronary arteries with anomalous origin or course. J. Nucl. Med. 45, 532–536 (2004).

    PubMed  Google Scholar 

  71. Hernandez-Pampaloni, M., Allada, V., Fishbein, M. C. & Schelbert, H. R. Myocardial perfusion and viability by positron emission tomography in infants and children with coronary abnormalities: correlation with echocardiography, coronary angiography, and histopathology. J. Am. Coll. Cardiol. 41, 618–626 (2003).

    PubMed  Google Scholar 

  72. Schrale, R. G., Channon, K. M. & Ormerod, O. J. IVUS-guided evaluation and percutaneous intervention in an anomalous left main coronary artery. J. Invasive Cardiol. 19, E195–E198 (2007).

    PubMed  Google Scholar 

  73. Pijls, N. H. et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92, 3183–3193 (1995).

    CAS  PubMed  Google Scholar 

  74. Pijls, N. H. et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 334, 1703–1708 (1996).

    CAS  PubMed  Google Scholar 

  75. Lim, M. J., Forsberg, M. J., Lee, R. & Kern, M. J. Hemodynamic abnormalities across an anomalous left main coronary artery assessment: evidence for a dynamic ostial obstruction. Catheter. Cardiovasc. Interv. 63, 294–298 (2004).

    PubMed  Google Scholar 

  76. Tsujita, K. et al. In vivo intravascular ultrasonic assessment of anomalous right coronary artery arising from left coronary sinus. Am. J. Cardiol. 103, 747–751 (2009).

    PubMed  Google Scholar 

  77. Mirchandani, S. & Phoon, C. K. Management of anomalous coronary arteries from the contralateral sinus. Int. J. Cardiol. 102, 383–389 (2005).

    PubMed  Google Scholar 

  78. Kaku, B. et al. Clinical features of prognosis of Japanese patients with anomalous origin of the coronary artery. Jpn. Circ. J. 60, 731–741 (1996).

    CAS  PubMed  Google Scholar 

  79. Romp, R. L. Outcome of unroofing procedure for repair of anomalous aortic origin of left or right coronary artery. Ann. Thorac Surg. 76, 589–595 (2003).

    PubMed  Google Scholar 

  80. Moustafa, S. E., Zehr, K., Mookadam, M., Lorenz, E. C. & Mookadam, F. Anomalous interarterial left coronary artery: an evidence based systematic overview. Int. J. Cardiol. 126, 13–20 (2008).

    PubMed  Google Scholar 

  81. van Son, J. A. & Haas, G. S. Anomalous origin of left main coronary artery from right sinus of Valsalva: modified surgical treatment to avoid neo-coronary ostial stenosis. Eur. J. Cardiothorac. Surg. 10, 467–469 (1996).

    CAS  PubMed  Google Scholar 

  82. Loop, F. D. et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N. Engl. J. Med. 314, 1–6 (1986).

    CAS  PubMed  Google Scholar 

  83. Fedoruk, L. M., Kern, J. A., Peeler, B. B. & Kron, I. L. Anomalous origin of the right coronary artery: right internal thoracic artery to right coronary artery bypass is not the answer. J. Thorac. Cardiovasc. Surg. 133, 456–460 (2007).

    PubMed  Google Scholar 

  84. Tavaf-Motamen, H. et al. Repair of anomalous origin of right coronary artery from the left sinus of Valsalva. Ann. Thorac. Surg. 85, 2135–2136 (2008).

    PubMed  Google Scholar 

  85. Davies, J. E. et al. Surgical management of anomalous aortic origin of a coronary artery. Ann. Thorac. Surg. 88, 844–847 (2009).

    PubMed  Google Scholar 

  86. Gulati, R. et al. Surgical management of coronary artery arising from the wrong coronary sinus, using standard and novel approaches. J. Thorac. Cardiovasc. Surg. 134, 1171–1178 (2007).

    PubMed  Google Scholar 

  87. Rodefeld, M. D., Culbertson, C. B., Rosenfeld, H. M., Hanley, F. L. & Thompson, L. D. Pulmonary artery translocation: a surgical option for complex anomalous coronary artery anatomy. Ann. Thorac. Surg. 72, 2150–2152 (2001).

    CAS  PubMed  Google Scholar 

  88. Alphonso, N. et al. Anomalous coronary artery from the wrong sinus of Valsalva: a physiologic repair strategy. Ann. Thorac. Surg. 83, 1472–1476 (2007).

    PubMed  Google Scholar 

  89. Hariharan, R., Kacere, R. D. & Angelini, P. Can stent-angioplasty be a valid alternative to surgery when revascularization is indicated for anomalous origination of a coronary artery from the opposite sinus? Tex. Heart Inst. J. 29, 308–313 (2002).

    PubMed  PubMed Central  Google Scholar 

  90. Doorey, A. J. et al. Six-month success of intracoronary stenting for anomalous coronary arteries associated with myocardial ischemia. Am. J. Cardiol. 86, 580–582, (2000).

    CAS  PubMed  Google Scholar 

  91. Taylor, A. J., Byers, J. P., Cheitlin, M. D. & Virmani, R. Anomalous right or left coronary artery from the contralateral coronary sinus: “high-risk” abnormalities in the initial coronary artery course and heterogeneous clinical outcomes. Am. Heart J. 133, 428–435 (1997).

    CAS  PubMed  Google Scholar 

  92. Lipsett, J., Cohle, S. D., Berry, P. J., Russell, G. & Byard, R. W. Anomalous coronary arteries: a multicenter pediatric autopsy study. Pediatr. Pathol. 14, 287–300 (1994).

    CAS  PubMed  Google Scholar 

  93. Ohnesorge, B. et al. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: initial experience. Radiology 217, 564–571 (2000).

    CAS  PubMed  Google Scholar 

  94. Flohr, T. G. et al. First performance evaluation of a dual-source CT (DSCT) system. Eur. Radiol. 16, 256–268 (2006).

    PubMed  Google Scholar 

  95. Reimann, A. J. et al. Dual-source computed tomography: advances of improved temporal resolution in coronary plaque imaging. Invest. Radiol. 42, 196–203 (2007).

    PubMed  Google Scholar 

  96. Feigenbaum, H. in Heart Disease: A Textbook of Cardiovascular Medicine 3rd edn Ch. 5 (ed. Braunwald, E. M. D.) 83 (W. B. Saunders Co., Philadelphia, 1988).

    Google Scholar 

  97. LaBounty, T. M. et al. Comparison of cardiac computed tomographic angiography to transesophageal echocardiography for evaluation of patients with native valvular heart disease. Am. J. Cardiol. 104, 1421–1428 (2009).

    PubMed  Google Scholar 

  98. Schuijf, J. D., Achenbach, S. A., de Feyter, P. J. & Bax, J. J. Current applications and limitations of coronary computed tomography angiography in stable coronary artery disease. Heart 97, 330–337 (2011).

    PubMed  Google Scholar 

  99. Foo, T. K. et al. Feasibility of integrating high-spatial-resolution 3D breath-hold coronary MR angiography with myocardial perfusion and viability examinations. Radiology 235, 1025–1030 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, USA is the author of and is solely responsible for the content of the learning objectives, questions, and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to the research, discussion, writing, and editing of this article.

Corresponding author

Correspondence to Steve Ramcharitar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J., Beale, A. & Ramcharitar, S. Anomalous origination of a coronary artery from the opposite sinus. Nat Rev Cardiol 8, 706–719 (2011). https://doi.org/10.1038/nrcardio.2011.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing