Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Revascularization in multivessel CAD: a functional approach

Abstract

The primary objective of invasive treatment strategies for multivessel coronary artery disease is complete anatomical revascularization—traditionally considered the strongest predictor of improved clinical outcome in this setting. This concept, however, is being challenged by evidence suggesting that addressing ischemia is the key to reducing mortality, myocardial infarction, and life-limiting angina. As objective evidence of ischemia can be provided by a functional assessment on the basis of fractional flow reserve, the focus of contemporary treatment should arguably shift from anatomical to functional revascularization. Moreover, the decision to revascularize specific lesions should be made after consideration of the degree of myocardial viability, ischemic burden, overall clinical risk, and technical feasibility. Most importantly, however, the revascularization strategy should be tailored to the individual patient and the expertise of the institution, and use contemporary techniques combined with modern pharmacotherapy. This Perspectives article summarizes the data supporting contemporary functional revascularization and its applicability to real-world practice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Terms used to describe revascularization approaches.
Figure 2: Illustration of the poor predictive value of angiographic assessment in coronary artery disease.
Figure 3: Overestimation of stenosis on coronary angiography.
Figure 4: Multivessel FFR can substantially alter the SYNTAX score.
Figure 5: Angiographic features that indicate suitability for hybrid coronary revascularization (all images from the same patient).

Similar content being viewed by others

References

  1. Topol, E. J. & Nissen S. E. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92, 2333–2342 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Meijboom, W. B. et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J. Am. Coll. Cardiol. 52, 636–643 (2008).

    Article  PubMed  Google Scholar 

  3. Kern, M. J. & Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J. Am. Coll. Cardiol. 55, 173–185 (2010).

    Article  PubMed  Google Scholar 

  4. Ragosta, M. et al. Comparison between angiography and fractional flow reserve versus single-photon emission computed tomographic myocardial perfusion imaging for determining lesion significance in patients with multivessel coronary disease. Am. J. Cardiol. 99, 896–902 (2007).

    Article  PubMed  Google Scholar 

  5. Lima, R. L. et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J. Am. Coll. Cardiol. 42, 64–70 (2003).

    Article  PubMed  Google Scholar 

  6. Lin, G. A. et al. Frequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. JAMA 300, 1765–1773 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Buda, A. J. et al. Long-term results following coronary bypass operation. Importance of preoperative factors and complete revascularization. J. Thorac. Carviovasc. Surg. 82, 383–390 (1981).

    CAS  Google Scholar 

  8. Kleisli, T. et al. In the current era, complete revascularization improves survival after coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 129, 1283–1291 (2005).

    Article  PubMed  Google Scholar 

  9. Hannan, E. L. et al. Impact of completeness of percutaneous coronary intervention revascularization on long-term outcomes in the stent era. Circulation 113, 2406–2412 (2006).

    Article  PubMed  Google Scholar 

  10. Hannan, E. L. et al. Incomplete revascularization in the era of drug-eluting stents: impact on adverse outcomes. JACC Cardiovasc. Interv. 2, 17–25 (2009).

    Article  PubMed  Google Scholar 

  11. Nikolsky, E. et al. Percutaneous coronary interventions in diabetic patients: is complete revascularization important? J. Invasive Cardiol. 16, 102–106 (2004).

    PubMed  Google Scholar 

  12. Kirschbaum, S. W. et al. Complete percutaneous revascularization for multivessel disease in patients with impaired left ventricular function: pre- and post-procedural evaluation by cardiac magnetic resonance imaging. JACC Cardiovasc. Interv. 3, 392–400 (2010).

    Article  PubMed  Google Scholar 

  13. Shroyer, A. L. et al. On-pump versus off-pump coronary-artery bypass surgery. N. Engl. J. Med. 361, 1827–1837 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Vander Salm, T. J. et al. What constitutes optimal surgical revascularization? Answers from the Bypass Angioplasty Revascularization Investigation (BARI). J. Am. Coll. Cardiol. 39, 565–572 (2002).

    Article  PubMed  Google Scholar 

  15. Kim, Y. et al. Impact of angiographic complete revascularization after drug-eluting stent implantation or coronary artery bypass graft surgery for multivessel coronary artery disease. Circulation 123, 2373–2381 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Serruys, P. W. et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N. Engl. J. Med. 360, 961–972 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) et al. Guidelines on myocardial revascularization. Eur. Heart J. 31, 2501–2555 (2010).

  18. Patel, M. R., Dehmer, G. J., Hirshfeld, J. W., Smith, P. K. & Spertus, J. A. ACCF/SCAI/STS/AATS/AHA/ASNC 2009 appropriateness criteria for coronary revascularization: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology: endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography. Circulation 119, 1330–1352 (2009).

    Article  PubMed  Google Scholar 

  19. Ong, T. L. & Serruys, P. W. Complete revascularization: coronary artery bypass graft surgery versus percutaneous coronary intervention. Circulation 114, 249–255 (2006).

    Article  PubMed  Google Scholar 

  20. Dauerman, H. L. Reasonable incomplete revascularization. Circulation 123, 2337–2340 (2011).

    Article  PubMed  Google Scholar 

  21. van den Brand, M. J. et al. The effect of completeness of revascularization on event-free survival at one year in the ARTS trial. J. Am. Coll. Cardiol. 39, 559–564 (2002).

    Article  PubMed  Google Scholar 

  22. Kim, Y. H. et al. Impact of angiographic complete revascularization after drug-eluting stent implantation or coronary artery bypass graft surgery for multivessel coronary artery disease. Circulation 123, 2373–2381 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Dash, H., Johnson, R. A., Dinsmore, R. E. & Harthorne, J. W. Cardiomyopathic syndrome due to coronary artery disease. 1: Relation to angiographic extent of coronary disease and to remote myocardial infarction. Br. Heart J. 39, 733–739 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Califf, R. M. et al. Prognostic value of a coronary artery jeopardy score. J. Am. Coll. Cardiol. 5, 1055–1063 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Alderman, E. L. & Stadius, M. The angiographic definitions of the Bypass Angioplasty Revascularization Investigation. Coron. Artery Dis. 3, 1189–1207 (1992).

    Google Scholar 

  26. Lee, J. T. Ideker, R. E. & Reimer, K. A. Myocardial infarct size and location in relation to the coronary vascular bed at risk in man. Circulation 64, 526–534 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Michelle, M. et al. Validation of three myocardial jeopardy scores in a population-based cardiac catheterization cohort. Am. Heart J. 142, 254–261 (2001).

    Article  Google Scholar 

  28. Bell, M. R. et al. Effect of completeness of revascularization on long-term outcome of patients with three-vessel disease undergoing coronary artery bypass surgery: A report from the Coronary Artery Surgery Study (CASS) Registry. Circulation 86, 446–457 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Agostini, M. et al. Impact of incomplete revascularization following OPCAB surgery. J. Card. Surg. 24, 650–656 (2009).

    Article  PubMed  Google Scholar 

  30. McLellan, C. S. et al. Association between completeness of percutaneous coronary revascularization and postprocedure outcomes. Am. Heart J. 150, 800–806 (2005).

    Article  PubMed  Google Scholar 

  31. Boden, W. E. et al. Optimal Medical Therapy with or without PCI for Stable Coronary Disease. N. Engl. J. Med. 356, 1503–1516 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kappetein, A. P. et al. Comparison of coronary artery bypass surgery with drug-eluting stenting for the treatment of left main and/or three-vessel disease: 3-year follow-up of the SYNTAX trial. Eur. Heart J. 32, 2125–2134 (2011).

    Article  PubMed  Google Scholar 

  33. Behan, M. W. et al. Simple or complex stenting for bifurcation coronary lesions: a patient-level pooled-analysis of the Nordic Bifurcation Study and the British Bifurcation Coronary Study. Circ. Cardiovasc. Interv. 4, 57–64 (2011).

    Article  PubMed  Google Scholar 

  34. Pijls, N. H. et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92, 3183–3193 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Pijls, N. H. et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 334, 1703–1708 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Pijls, N. H. et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J. Am. Coll. Cardiol. 49, 2105–2111 (2007).

    Article  PubMed  Google Scholar 

  37. Pijls, N. H. J. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients With multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J. Am. Coll. Cardiol. 56, 177–184 (2010).

    Article  PubMed  Google Scholar 

  38. Berger, A. et al. Long-term clinical outcome after fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. J. Am. Coll. Cardiol. 46, 438–442 (2005).

    Article  PubMed  Google Scholar 

  39. Wongpraparut, N. et al. Thirty-month outcome after fractional flow reserve-guided versus conventional multivessel percutaneous coronary intervention. Am. J. Cardiol. 96, 877–884 (2005).

    Article  PubMed  Google Scholar 

  40. Shaw, L. J. et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117, 1283–1291 (2008).

    Article  PubMed  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  42. Tonino, P. A. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360, 213–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Fearon, W. F. et al. Economic evaluation of fractional flow reserve-guided percutneous coronary intervention in patients with multivessel disease. Circulation 122, 2545–2550 (2010).

    Article  PubMed  Google Scholar 

  44. Stone, G. W. et al. A Prospective Natural-History Study of Coronary Atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Tonino, P. A. et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study. J. Am. Coll. Cardiol. 55, 2816–2821 (2010).

    Article  PubMed  Google Scholar 

  46. Sant'Anna, F. M. et al. Influence of routine assessment of fractional flow reserve on decision making during coronary interventions. Am. J. Cardiol. 99, 504–508 (2007).

    Article  PubMed  Google Scholar 

  47. Melikian, N. et al. Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc. Interv. 3, 307–314 (2010).

    Article  PubMed  Google Scholar 

  48. Goldberg, R. K., Kleiman, N. S., Minor, S. T., Abukhalil, J. & Raizner, A. E. Comparison of quantitative coronary angiography to visual estimates of lesion severity pre and post PTCA. Am. Heart J. 119, 178–184 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Fleming, R. M., Kirkeeide, R. L., Smalling, R. W. & Gould, K. L. Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography. J. Am. Coll. Cardiol. 18, 945–951 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Girasis, C. et al. Validity and variability in visual assessment of stenosis severity in phantom bifurcation lesions: A survey in experts during the fifth meeting of the european bifurcation club. Cathether Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.23213.

  51. Fischer, J. J. et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am. J. Cardiol. 90, 210–215 (2002).

    Article  PubMed  Google Scholar 

  52. Yong, A. S. C. et al. Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur. Heart J. 32, 345–353 (2011).

    Article  PubMed  Google Scholar 

  53. Iqbal, M. B., Shah, N., Khan, M. & Wallis, W. Reduction in myocardial perfusion territory and its effect on the physiological severity of a coronary stenosis. Circ. Cardiovasc. Interv. 3, 89–90 (2010).

    Article  PubMed  Google Scholar 

  54. Schächingerm V., Herdeg, C. & Scheller, B. Best way to revascularize patients with main stem and three vessel lesions: patients should undergo PCI! Clin. Res. Cardiol. 99, 531–539 (2010).

    Article  Google Scholar 

  55. Serruys, P. W. & Mohr, F. W. Correspondence: Percutaneous coronary intervention versus coronary-artery bypass grafting. N. Engl. J. Med. 360, 2672–2675 (2009).

    Article  Google Scholar 

  56. Nam, C. W. et al. Functional SYNTAX Score for Risk Assessment in Multivessel Coronary Disease. J. Am. Coll. Cardiol. 58, 1211–1218 (2011).

    Article  PubMed  Google Scholar 

  57. Courtis, J. et al. Usefulness of coronary fractional flow reserve measurements in guiding clinical decisions in intermediate or equivocal left main coronary stenoses. Am. J. Cardiol. 103, 943–949 (2009).

    Article  PubMed  Google Scholar 

  58. Hamilos, M. et al. Long-term clinical outcome after fractional flow reserve–guided treatment in patients with angiographically equivocal graphically equivocal left main coronary artery stenosis. Circulation 120, 1505–1512 (2009).

    Article  PubMed  Google Scholar 

  59. Jasti, V., Ivan, E., Yalamanchili, V., Wongpraparut, N. & Leesar, M. A. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary stenosis. Circulation 110, 2831–2836 (2004).

    Article  PubMed  Google Scholar 

  60. Bech, G. J. et al. Value of fractional flow reserve in making decisions about bypass surgery for equivocal left main coronary artery disease. Heart 86, 547–552 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abizaid, A. S. et al. One-year follow-up after intravascular ultrasound assessment of moderate left main coronary artery disease in patients with ambiguous angiograms. J. Am. Coll. Cardiol. 34, 707–715 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Leesar, M. A., Masden, R. & Jasti, V. Physiological and intravascular ultrasound assessment of an ambiguous left main coronary artery stenosis. Catheter Cardiovasc. Interv. 62, 349–357 (2004).

    Article  PubMed  Google Scholar 

  63. Federspiel, J. J. et al. Risk-benefit trade-offs in revascularization choices. EuroIntervention 6, 936–941 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Taggart, D. P. D'Amico, R. & Altman, D. G. The effect of arterial revascularization on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet 358, 870–875 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Taggart, D. P. et al. Randomized trial to compare bilateral vs. single internal mammary coronary artery bypass grafting: 1-year results of the Arterial Revascularisation Trial (ART). Eur. Heart J. 31, 2471–2481 (2010).

    Article  Google Scholar 

  66. Bridgewater, B., Keogh, B., Kinsman, R. & Walton, P. K. H. Sixth National Adult Cardiac Surgical Database Report 2008: demonstrating quality (Dendrite Clinical Systems Ltd, Henley upon Thames, 2009).

    Google Scholar 

  67. Tabata, M. et al. Prevalence and variability of internal mammary artery graft use in contemporary multivessel coronary artery bypass graft surgery: analysis of the Society of Thoracic Surgeons National Cardiac Database. Circulation 120, 935–940 (2009).

    Article  PubMed  Google Scholar 

  68. Alexander, J. H. et al. Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 294, 2446–2454 (2005).

    Article  PubMed  Google Scholar 

  69. Puskas, J. D. et al. Off-pump vs. conventional coronary artery bypass grafting: early and 1-year graft patency, cost and quality of life outcomes: a randomized trial. JAMA 291, 1841–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Alderman, E. L. et al. Coronary Artery Surgery Study (CASS): a randomized trial of coronary artery bypass surgery. Circulation 68, 939–950 (1983).

    Article  Google Scholar 

  71. Varnauskas, E. Twelve-year follow-up of survival in the randomized European Coronary Surgery Study. N. Engl. J. Med. 319, 332–337 (1988).

    Article  CAS  PubMed  Google Scholar 

  72. Hayward, P. A. & Buxton, B. F. Contemporary coronary graft patency: 5-year observational data from a randomized trial of conduits. Ann. Thorac. Surg. 84, 795–799 (2007).

    Article  PubMed  Google Scholar 

  73. Tatoulis, J., Buxton, B. F. & Fuller, J. A. Patencies of 2127 arterial to coronary conduits over 15 years. Ann. Thorac. Surg. 77, 93–101 (2004).

    Article  PubMed  Google Scholar 

  74. Grube, E. et al. TAXUS I: six-and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 107, 38–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Mauri, L., Orav, E. J. & Kuntz, R. E. Late loss in lumen diameter and binary restenosis for drug-eluting stent comparison. Circulation 111, 3435–3442 (2005).

    Article  PubMed  Google Scholar 

  76. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  77. Kon, Z. N. et al. Simultaneous hybrid coronary revascularization reduces postoperative morbidity compared with results from conventional off-pump coronary artery bypass. J. Thorac. Cardiovasc. Surg. 135, 367–375 (2008).

    Article  PubMed  Google Scholar 

  78. Reicher, B. et al. Simultaneous “hybrid” percutaneous coronary intervention and minimally invasive surgical bypass grafting: Feasibility, safety, and clinical outcomes. Am. Heart J. 155, 661–667 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mintz, G. S. et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 95, 644–647 (2005).

    Article  Google Scholar 

  80. Colombo, A. The AVIO Trial. Presented at the late-breaking clinical-trials session, TCT Conference, San Francisco (2010).

  81. Park, S. J. et al. Impact of Intravascular Ultrasound Guidance on Long-Term Mortality in Stenting for Unprotected Left Main Coronary Artery Stenosis. Circ. Cardiovasc. Intervent. 2, 167–177 (2009).

    Article  Google Scholar 

  82. Gurbel, P. A., Bliden, K. P., Hiatt, B. L. & O'Connor, C. M. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 107, 2908–2913 (2003).

    Article  PubMed  Google Scholar 

  83. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Wiviott, S. D. et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Leaman, D. M., Brower, R. W., Meester, G. T., Serruys, P. & van den Brand, M. Coronary artery atherosclerosis: severity of the disease, severity of angina pectoris and compromised left ventricular function. Circulation 63, 285–299 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to writing, reviewing, and editing the article.

Corresponding author

Correspondence to Antonio Colombo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shannon, J., Colombo, A. Revascularization in multivessel CAD: a functional approach. Nat Rev Cardiol 9, 243–252 (2012). https://doi.org/10.1038/nrcardio.2011.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.213

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing