Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiac troponin level elevations not related to acute coronary syndromes

Key Points

  • One-fifth of acutely symptomatic patients admitted to an emergency department have elevated levels of cardiac troponins (cTn), but the majority do not have an acute coronary syndrome (ACS)

  • Reasons for elevated cTn levels in acute or chronic non-ACS conditions are likely to be multifactorial, including myocardial ischaemia, ventricular strain, myocyte trauma, impaired renal clearance, and unknown mechanisms

  • High-sensitivity assays for cTn can rule out non-ST-segment elevation myocardial infarction at an early stage in the diagnostic process

  • The result of a test for cTn levels should not be interpreted in isolation, but in the context of clinical findings

  • Even low levels of cTn can be prognostically important and associated with adverse outcomes in the absence of an ACS, and require investigation of the underlying causes

Abstract

Over the past 2 decades, cardiac troponins (cTn) have emerged as the preferred biomarkers for the noninvasive detection of myocardial injury. In conjunction with typical clinical findings of ischaemia, elevated cTn levels in blood confirm a diagnosis of myocardial infarction. However, neither cTnT or cTnI are exclusively released as a result of ischaemic myocardial cell necrosis, but also with numerous nonischaemic acute and chronic cardiac conditions, such as myopericarditis, toxic injury, or severe cardiac overload. With the advent of high-sensitivity assays, causes of cTn elevation not related to an acute coronary syndrome (ACS) have become common findings in patients with chest pain and in those with acute or chronic systemic disorders. Elevated cTn levels in blood are associated with increased rates of cardiac events and mortality, independently of the underlying disease. However, the clinical conditions leading to cTn release in patients who do not have ACS, and the appropriate diagnostic and therapeutic strategies for these individuals, are largely unknown. Here, we provide an overview of the many causes and the prognostic importance of the release of cTn not related to ACS. We also recommend strategies to discriminate between ischaemic and nonischaemic cTn elevation, and describe the clinical evaluation of these patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Algorithm for accelerated rule-out and rule-in of NSTEMI based on ESC recommendations.5,9
Figure 2: Release of cTnT after reperfused STEMI, after acute pulmonary embolism, and after a marathon run.
Figure 3: Proposed pathophysiological mechanisms and modifying factors for elevated levels of cardiac troponins (cTn) in blood.
Figure 4: Prevalence and reasons for elevated levels of cTnI among patients admitted to an emergency department over a 3-month period.

Similar content being viewed by others

References

  1. Katus, H. A. et al. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am. J. Cardiol. 67, 1360–1367 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Katus, H. A. et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 83, 902–912 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Katus, H. A. et al. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J. Mol. Cell. Cardiol. 21, 1349–1353 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Thygesen, K. et al. Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 9, 620–633 (2012).

    Article  PubMed  Google Scholar 

  5. Thygesen, K. et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur. Heart J. 33, 2252–2257 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Giannitsis, E. et al. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin. Chem. 56, 254–261 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Keller, T. et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. N. Engl. J. Med. 361, 868–877 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Reichlin, T. et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N. Engl. J. Med. 361, 858–867 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Hamm, C. W. et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 32, 2999–3054 (2011).

    Article  PubMed  Google Scholar 

  10. Hamm, C. W., Giannitsis, E. & Katus, H. A. Cardiac troponin elevations in patients without acute coronary syndrome. Circulation 106, 2871–2872 (2002).

    Article  PubMed  Google Scholar 

  11. Jeremias, A. & Gibson, M. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann. Intern. Med. 142, 786–791 (2005).

    Article  PubMed  Google Scholar 

  12. Agewall, S., Giannitsis, E., Jernberg, T. & Katus, H. Troponin elevation in coronary vs non-coronary disease. Eur. Heart J. 32, 404–411 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Giannitsis, E. et al. New highly sensitivity assay used to measure cardiac troponin T concentration changes during a continuous 216 km marathon. Clin. Chem. 55, 590–592 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Braunwald, E. et al. ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Unstable Angina). J. Am. Coll. Cardiol. 36, 970–1062 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Remppis, A. et al. Intracellular compartmentation of troponin T: release kinetics after global ischemia and calcium paradox in the isolated perfused rat heart. J. Mol. Cell. Cardiol. 27, 793–803 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Müller-Bardorff, M., Weidtmann, B., Giannitsis, E., Kurowski, V. & Katus, H. A. Release kinetics of cardiac troponin T in survivors of confirmed severe pulmonary embolism. Clin. Chem. 48, 673–675 (2002).

    Article  PubMed  Google Scholar 

  17. Gerhardt, W. et al. S-troponin T in suspected ischemic myocardial injury compared with mass and catalytic concentrations of S-creatine kinase isoenzyme MB. Clin. Chem. 37, 1405–1411 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Wu, A. H. & Ford, L. Release of cardiac troponin in acute coronary syndromes: ischemia or necrosis? Clin. Chim. Acta 284, 161–174 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Feng, J., Schaus, B. J., Fallavollita, J. A., Lee, T. C. & Canty, J. M. Jr. Preload induces troponin I degradation independently of myocardial ischemia. Circulation 103, 2035–2037 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Feng, Y. J. et al. Comparison of cardiac troponin I, creatine kinase-MB, and myoglobin for detection of acute ischemic myocardial injury in a swine model. Am. J. Clin. Pathol. 110, 70–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Sabatine, M. S., Morrow, D. A., de Lemos, J. A., Jarolim, P. & Braunwald, E. Detection of acute changes in circulating troponin in the setting of transient stress test-induced myocardial ischaemia using an ultrasensitive assay: results from TIMI 35. Eur. Heart J. 30, 162–169 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kurz, K., Giannitsis, E., Zehelein, J. & Katus, H. A. Highly sensitive cardiac troponin T values remain constant after brief exercise- or pharmacologic-induced reversible myocardial ischemia. Clin. Chem. 54, 1234–1238 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Røysland, R. et al. Cardiac troponin T levels and exercise stress testing in patients with suspected coronary artery disease: the Akershus Cardiac Examination (ACE) 1 study. Clin. Sci. (Lond.) 122, 599–606 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  24. Turer, A. T. et al. Myocardial ischemia induced by rapid atrial pacing causes troponin T release detectable by a highly sensitive assay: insights from a coronary sinus sampling study. J. Am. Coll. Cardiol. 57, 2398–2405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Apple, F. S., Ler, R. & Murakami, M. M. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin. Chem. 58, 1574–1581 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Saenger, A. K. et al. Multicentre analytical evaluation of a high-sensitivity troponin T assay. Clin. Chim. Acta 412, 748–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olivetti, G. et al. Gender differences and aging: effects on the human heart. J. Am. Coll. Cardiol. 26, 1068–1079 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Irfan, A. et al. Determinants of high-sensitivity troponin T among patients with a noncardiac cause of chest pain. Am. J. Med. 125, 491–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Hickman, P. E. et al. Cardiac troponin may be released by ischemia alone, without necrosis. Clin. Chim. Acta 411, 318–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Hessel, M. H. et al. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. 455, 979–986 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Cohn, J. N. et al. Plasma noredrenaline as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Swedberg, K., Eneroth, P., Kjekshus, J. & Wilhelmsen, L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS trial study group. Circulation 82, 1730–1736 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Logeart, D. et al. Evidence of cardiac myolysis in severe nonischemic heart failure and the potential role of increased wall strain. Am. Heart J. 141, 247–253 (2001).

    Article  CAS  Google Scholar 

  35. Cheng, W. et al. Stretch-induced programmed myocyte cell death. J. Clin. Invest. 96, 2247–2259 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nunes, J P. et al. Cardiac troponin I in aortic valve disease. Int. J. Cardiol. 89, 281–285 (2003).

    Article  PubMed  Google Scholar 

  37. Kupari, M., Eriksson, S., Turto, H., Lommi, J. & Pettersson K. Leakage of cardiac troponin I in aortic valve stenosis. J. Intern. Med. 258, 231–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Giannitsis, E. et al. Independent prognostic value of cardiac troponin T in patients with confirmed pulmonary embolism. Circulation 102, 211–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Konstantinides, S. et al. Importance of cardiac troponins I and T in risk stratification of patients with acute pulmonary embolism. Circulation 106, 1263–1268 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Apple, F. S. & Collinson, P. O. for the IFCC Task Force on Clinical Applications of Cardiac Biomarkers. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin. Chem. 58, 54–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Apple, F. S. A new season for cardiac troponin assays: it's time to keep a scorecard. Clin. Chem. 55, 1303–1306 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Mueller, M. et al. Diagnostic and prognostic performance of a novel high-sensitivity cardiac troponin T assay compared to a contemporary sensitive cardiac troponin I assay in patients with acute coronary syndrome. Clin. Res. Cardiol. 101, 837–845 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Aldous, S. J. et al. Comparison of high sensitivity and contemporary troponin assays for the early detection of acute myocardial infarction in the emergency department. Ann. Clin. Biochem. 48, 241–248 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Røsjø, H. et al. Troponin I measured by a high-sensitivity assay in patients with suspected reversible myocardial ischemia: data from the Akershus Cardiac Examination (ACE) 1 study. Clin. Chem. 58, 1565–1573 (2012).

    Article  PubMed  CAS  Google Scholar 

  45. Reichlin, T. et al. Risk stratification in patients with unstable angina using absolute serial changes of 3 high-sensitive troponin assays. Am. Heart J. 165, 371–378 (2013).

    Article  PubMed  Google Scholar 

  46. Haaf, P. et al. High-sensitivity cardiac troponin in the distinction of acute myocardial infarction from acute cardiac noncoronary artery disease. Circulation 126, 31–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Mueller, M. et al. Absolute and relative kinetic changes of high-sensitivity cardiac troponin T in acute coronary syndrome and in patients with increased troponin in the absence of acute coronary syndrome. Clin. Chem. 58, 209–218 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Gassenmaier, T. et al. High-sensitive troponin I in acute cardiac conditions: implications of baseline and sequential measurements for diagnosis of myocardial infarction. Atherosclerosis 222, 116–122 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Keller, T. et al. Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA 306, 2684–2693 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Giannitsis, E. et al. High-sensitivity cardiac troponin T for early prediction of evolving non-ST-segment elevation myocardial infarction in patients with suspected acute coronary syndrome and negative troponin results on admission. Clin. Chem. 56, 642–650 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Reichlin T. et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation 124, 136–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Eggers, K. M., Jaffe, A. S., Venge, P. & Lindahl, B. Clinical implications of the change of cardiac troponin I levels in patients with acute chest pain—an evaluation with respect to the Universal Definition of Myocardial Infarction. Clin. Chim. Acta 412, 91–97 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kavsak, P. A. et al. Is a pattern of increasing biomarker concentrations important for long-term risk stratification in acute coronary syndrome patients presenting early after the onset of symptoms? Clin. Chem. 54, 747–751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kavsak, P. A., Ko, D. T., Wang, X., MacRae, A. R. & Jaffe, A. S. Increasing cardiac troponin changes measured by a research high-sensitivity troponin I assay: absolute vs percentage changes and long-term outcomes in a chest pain cohort. Clin. Chem. 56, 1902–1904 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Aldous, S. J., Richards, A. M., Cullen, L. & Than, M. P. Early dynamic change in high-sensitivity cardiac troponin T in the investigation of acute myocardial infarction. Clin. Chem. 57, 1154–1160 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Javed, U. et al. Frequency of elevated troponin I and diagnosis of acute myocardial infarction. Am. J. Cardiol. 104, 9–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Imazio, M. et al. Myopericarditis versus viral or idiopathic acute pericarditis. Heart 94, 498–501 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Remes, J., Helin, M., Vaino, P. & Rautio, P. Clinical outcome and left ventricular function 23 years after acute Coxsackie virus myopericarditis. Eur. Heart J. 11, 182–188 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Torbicki, A. et al. Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur. Heart J. 29, 2276–2315 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Lankeit, M. et al. Highly sensitive troponin T assay in normotensive patients with acute pulmonary embolism. Eur. Heart J. 31, 1836–1844 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Peacock, W. F. 4th et al. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 358, 2117–2126 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Januzzi, J. L. et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur. Heart J. 27, 330–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Braga, J. R. et al. Outcomes and care of patients with acute heart failure syndromes and cardiac troponin elevation. Circ. Heart Fail. 6, 193–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Hijazi, Z., Oldgren, J., Siegbahn, A., Granger, C. B. & Wallentin, L. Biomarkers in atrial fibrillation: a clinical review. Eur. Heart J. 34, 1475–1480 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Zellweger, M. J., Schaer, B. A., Cron, T., Pfisterer, M. E. & Oswald, S. Elevated troponin levels in absence of coronary artery disease after supraventricular tachycardia. Swiss Med. Wkly 133, 439–441 (2003).

    CAS  PubMed  Google Scholar 

  66. Redfearn, D. P., Ratib, K., Marshall, H. J. & Griffith, M. J. Supraventricular tachycardia promotes release of troponin I in patients with normal coronary arteries. Int. J. Cardiol. 102, 521–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Miranda, R. C., Machado, M. N. & Takakura, I. T. Elevated troponin levels after prolonged tachycardia in patients with normal coronary angiography. Cardiology 106, 10–13 (2006).

    Article  PubMed  Google Scholar 

  68. Schueler, M. et al. Prevalence, kinetic changes and possible reasons of elevated cardiac troponin T in patients with AV nodal re-entrant tachycardia. Acute Card. Care 14, 131–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Carlberg, D. J., Tsuchitani, S., Barlotta, K. S. & Brady, W. J. Serum troponin testing in patients with paroxysmal supraventricular tachycardia: outcome after ED care. Am. J. Emerg. Med. 29, 545–548 (2011).

    Article  PubMed  Google Scholar 

  70. Chow, G. V. et al. Prognostic significance of cardiac troponin I levels in hospitalized patients presenting with supraventricular tachycardia. Medicine (Baltimore) 89, 141–148 (2010).

    Article  CAS  Google Scholar 

  71. Hijazi, Z. et al. Cardiac biomarkers are associated with an increased risk of stroke and death in patients with atrial fibrillation: a randomized evaluation of long-term anticoagulation therapy (RE-LY) substudy. Circulation 125, 1605–1616 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Wallentin, L. C. et al. High sensitivity troponin-T for risk stratification in atrial fibrillation during treatment with apixaban or warfarin [abstract]. Eur. Heart J. 33 (Suppl. 53), P558 (2012).

    Google Scholar 

  73. Bugnicourt, J. M. et al. Troponin levels help predict new-onset atrial fibrillation in ischaemic stroke patients: a retrospective study. Eur. Neurol. 63, 24–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Wu, A. H. Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med. 27, 959–961 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Altmann, D. R. et al. Elevated cardiac troponin I in sepsis and septic shock: no evidence for thrombus associated myocardial necrosis. PLoS ONE 5, e9017 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Favoury, R. & Neviere, R. Significance and interpretation of elevated troponin in septic patients. Crit. Care 10, 224 (2006).

    Article  Google Scholar 

  77. Ammann, P., Fehr, T., Minder, E. I., Günter, C. & Bertel, O. Elevation of troponin I in sepsis and septic shock. Intensive Care Med. 27, 965–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Ammann, P. et al. Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J. Am. Coll. Cardiol. 41, 2004–2009 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Lim, W. et al. Elevated cardiac troponin measurements in critically ill patients. Arch. Intern. Med. 166, 2446–2454 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Bessière, F., Khenifer, S., Dubourg, J., Durieu, I. & Lega, J. C. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 39, 1181–1189 (2013).

    Article  PubMed  CAS  Google Scholar 

  81. McFalls, E. O. et al. Outcomes of hospitalized patients with non-acute coronary syndrome and elevated cardiac troponin level. Am. J. Med. 124, 630–635 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Omland, T. et al. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med. 361, 2538–2547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koenig, W. et al. Cardiac troponin T measured by a high-sensitivity assay predicts recurrent cardiovascular events in stable coronary heart disease patients with 8-year follow-up. Clin.Chem. 58, 1215–1224 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Korosoglou, G. et al. Determinants of troponin release in patients with stable coronary artery disease: insights from CT angiography characteristics of atherosclerotic plaque. Heart 97, 823–831 (2011).

    Article  PubMed  Google Scholar 

  85. Latini, R. et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 116, 1242–1249 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Barlera, S. et al. Predictors of mortality in 6,975 patients with chronic heart failure in the Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico–Heart Failure trial: proposal for a nomogram. Circ. Heart Fail. 6, 31–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Nagarajan, V., Hernandez, A. V. & Tang, W. H. Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review. Heart 98, 1778–1786 (2012).

    Article  PubMed  Google Scholar 

  88. Tang, W. H., Wu, Y., Britt, E. B. Jr, Iqbal, N. & Hazen, S. L. Detectable subclinical myocardial necrosis is associated with cardiovascular risk in stable patients with diabetes mellitus. Diabetes Care 36, 1126–1131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Everett, B. M. et al. Sensitive cardiac troponin T assay and the risk of incident cardiovascular disease in women with and without diabetes mellitus: the Women's Health Study. Circulation 123, 2811–2818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hallén, J. et al. Determinants and prognostic implications of cardiac troponin T measured by a sensitive assay in type 2 diabetes mellitus. Cardiovasc. Diabetol. 9, 52 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Lankeit, M. et al. Heart-type fatty acid-binding protein for risk assessment of chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 31, 1024–1029 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Filusch, A., Giannitsis, E., Katus, H. A. & Meyer, F. J. High-sensitive troponin T: a novel biomarker for prognosis and disease severity in patients with pulmonary arterial hypertension. Clin. Sci. (Lond.) 119, 207–213 (2010).

    Article  CAS  Google Scholar 

  93. Apple, F. S., Murakami, M. M., Pearce, L. A. & Herzog, C. A. Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease. Circulation 106, 2941–2945 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Jacobs, L. H. et al. Haemodialysis patients longitudinally assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and cardiac troponin I assays. Ann. Clin. Biochem. 46, 283–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. McGill, D., Talaulikar, G., Potter, J. M., Koerbin, G. & Hickman, P. E. Over time, high-sensitivity TnT replaces NT-proBNP as the most powerful predictor of death in patients with dialysis-dependent chronic renal failure. Clin. Chim. Acta 411, 936–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. deFilippi, C. et al. Interpreting cardiac troponin results from high-sensitivity assays in chronic kidney disease without acute coronary syndrome. Clin. Chem. 58, 1342–1351 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Kavsak, P. A., Xu, L., Yusuf, S. & McQueen, M. J. High-sensitivity cardiac troponin I measurement for risk stratification in a stable high-risk population. Clin. Chem. 57, 1146–1153 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. de Lemos, J. A. et al. Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA 304, 2503–2512 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saunders, J. T. et al. Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study. Circulation 123, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. deFilippi, C. R. et al. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA 304, 2494–2502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, T. J. et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation 126, 1596–1604 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. de Lemos, J. A. Increasingly sensitive assays for cardiac troponins: a review. JAMA 309, 2262–2269 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. deFilippi, C. R. et al. Physical activity, change in biomarkers of myocardial stress and injury, and subsequent heart failure risk in older adults. J. Am. Coll. Cardiol. 60, 2539–2547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eggers, K. M. et al. Prevalence and pathophysiological mechanisms of elevated cardiac troponin I levels in a population-based sample of elderly subjects. Eur. Heart J. 29, 2252–2258 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Zethelius, B., Johnston, N. & Venge, P. Troponin I as a predictor of coronary heart disease and mortality in 70-year-old men: a community-based cohort study. Circulation 113, 1071–1078 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Hammarsten, O. et al. Troponin T percentiles from a random population sample, emergency room patients and patients with myocardial infarction. Clin. Chem. 58, 628–637 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Reiter, M. et al. Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur. Heart J. 32, 1379–1389 (2011).

    Article  PubMed  Google Scholar 

  108. Normann, J. et al. Effect of older age on diagnostic and prognostic performance of high-sensitivity troponin T in patients presenting to an emergency department. Am. Heart J. 164, 698–705 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Scherr, J. et al. 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med. Sci. Sports Exerc. 43, 1819–1827 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed to the discussion of content, wrote the manuscript, and reviewed/edited the article before submission.

Corresponding author

Correspondence to Evangelos Giannitsis.

Ethics declarations

Competing interests

H. A. Katus invented the cTnT assay and holds a patent jointly with Roche Diagnostics. He receives honoraria for lectures and research grants from Roche Diagnostics. E. Giannitsis receives honoraria for lecturers and research grants from Roche Diagnostics.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannitsis, E., Katus, H. Cardiac troponin level elevations not related to acute coronary syndromes. Nat Rev Cardiol 10, 623–634 (2013). https://doi.org/10.1038/nrcardio.2013.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing