Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contributions of risk factors and medical care to cardiovascular mortality trends

Key Points

  • Death rates from ischaemic heart disease (IHD), stroke, and other cardiovascular diseases (CVDs) are decreasing in high-income and many Latin American countries, and this trend shows no signs of slowing

  • Declines in some behavioural risk factors, including smoking, and physiological risk factors, such as blood pressure and serum cholesterol, are likely to have helped to reduce CVDs

  • By contrast, the nearly universal increase in adiposity seems not to have modified the long-term declining trend in CVD mortality, although it might have had some slowing effect

  • Improved medical care, including effective treatment of physiological risk factors, diagnosis, treatment of acute CVDs, and post-hospital care, has also contributed to declining CVD events and mortality

  • Measured risk factor and treatment variables, while important, explain neither why the decline began when it did nor many of the similarities and differences between countries or between men and women

  • Substantial fluctuations in CVDs, and in alcohol intake, in former communist countries of Europe have followed times of massive political and social changes since the early 1990s

Abstract

Ischaemic heart disease, stroke, and other cardiovascular diseases (CVDs) lead to 17.5 million deaths worldwide per year. Taking into account population ageing, CVD death rates are decreasing steadily both in regions with reliable trend data and globally. The declines in high-income countries and some Latin American countries have been ongoing for decades without slowing. These positive trends have broadly coincided with, and benefited from, declines in smoking and physiological risk factors, such as blood pressure and serum cholesterol levels. These declines have also coincided with, and benefited from, improvements in medical care, including primary prevention, diagnosis, and treatment of acute CVDs, as well as post-hospital care, especially in the past 40 years. These variables, however, explain neither why the decline began when it did, nor the similarities and differences in the start time and rate of the decline between countries and sexes. In Russia and some other former Soviet countries, changes in volume and patterns of alcohol consumption have caused sharp rises in CVD mortality since the early 1990s. An important challenge in reaching firm conclusions about the drivers of these remarkable international trends is the paucity of time-trend data on CVD incidence, risk factors throughout the life-course, and clinical care.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trends in age-standardized CVD death rates in adults aged ≥30 years, by geographical region and sex, from 2000 to 2012.
Figure 2: Relative change in CVD death rates by decade, sex, and age group in 20 western high-income countries.
Figure 3: Trends in CVD death rates in high-income countries for adults aged 30–69 years, by sex.
Figure 4: Trends in CVD death rates in high-income countries for adults aged ≥70 years, by sex.
Figure 5: Trends in death rates from cancers, cardiovascular diseases, and external causes in adults aged 25–64 years in Russia.
Figure 6: Trends in the male-to-female ratio of cardiovascular death rates for adults aged 30–69 years in countries with reliable mortality data.
Figure 7: Percentage of excess relative risk of cancers, COPD, and cardiovascular diseases remaining over time after exposure to a risk factor has stopped or been reduced.
Figure 8: Trends in recorded per-capita alcohol consumption among adults aged ≥15 years.
Figure 9: Cross-country associations between changes in risk factors and CVD death rates, between 1980 and 2008.

Similar content being viewed by others

References

  1. WHO. Global Health Estimates: Deaths by Cause, Age, Sex and Country, 2000–2012 (WHO, 2014).

  2. Moran, A. E. et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation 129, 1483–1492 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kontis, V. et al. Contribution of six risk factors to achieving the 25x25 non-communicable disease mortality reduction target: a modelling study. Lancet 384, 427–437 (2014).

    Article  PubMed  Google Scholar 

  4. Feigin, V. L. et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383, 245–254 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Asaria, P. et al. Trends and inequalities in cardiovascular disease mortality across 7932 English electoral wards, 1982–2006: Bayesian spatial analysis. Int. J. Epidemiol. 41, 1737–1749 (2012).

    Article  PubMed  Google Scholar 

  6. Di Cesare, M. et al. Inequalities in non-communicable diseases and effective responses. Lancet 381, 585–597 (2013).

    Article  PubMed  Google Scholar 

  7. Harper, S., Lynch, J. & Smith, G. D. Social determinants and the decline of cardiovascular diseases: understanding the links. Annu. Rev. Public Health 32, 39–69 (2011).

    Article  PubMed  Google Scholar 

  8. Danaei, G. et al. The promise of prevention: the effects of four preventable risk factors on national life expectancy and life expectancy disparities by race and county in the United States. PLoS Med. 7, e1000248 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Keys, A. Coronary heart disease—the global picture. Atherosclerosis 22, 149–192 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. Strom, A. & Jensen, R. A. Mortality from circulatory diseases in Norway 1940–1945. Lancet 1, 126–129 (1951).

    Article  CAS  PubMed  Google Scholar 

  11. Morris, J. N. Recent history of coronary disease. Lancet 1, 69–73 (1951).

    Article  CAS  PubMed  Google Scholar 

  12. Woolsey, T. D. & Moriyama, I. M. Statistical studies of heart diseases; important factors in heart disease mortality trends. Public Health Rep. 63, 1247–1273 (1948).

    Article  CAS  PubMed  Google Scholar 

  13. Moriyama, I. M. & Gover, M. Heart diseases and allied causes of death in relation to age changes in the population. Public Health Rep. 63, 537–545 (1948).

    Article  CAS  PubMed  Google Scholar 

  14. Stallones, R. A. The rise and fall of ischemic heart disease. Sci. Am. 243, 53–59 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Moriyama, I. M. & Woolsey, T. D. Statistical studies of heart disease. IX. Race and sex differences in the trend of mortality from the major cardiovascular-renal diseases. Public Health Rep. 66, 355–368 (1951).

    Article  CAS  PubMed  Google Scholar 

  16. Klebba, A. J., Maurer, J. D. & Glass, E. J. Mortality trends for leading causes of death: United States, 1950–1969. Vital Health Stat. 20, 1–79 (1974).

    Google Scholar 

  17. Borhani, N. O. & Hechter, H. H. Recent changes in CVR disease mortality in California. Public Health Rep. 79, 147–160 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walker, W. J. Coronary mortality: what is going on? JAMA 227, 1045–1046 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Stern, M. P. The recent decline in ischemic heart disease mortality. Ann. Intern. Med. 91, 630–640 (1979).

    Article  CAS  PubMed  Google Scholar 

  20. Walker, W. J. Changing United States life-style and declining vascular mortality: cause or coincidence? N. Engl. J. Med. 297, 163–165 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Uemura, K. & Pisa, Z. Recent trends in cardiovascular disease mortality in 27 industrialized countries. World Health Stat. Q. 38, 142–162 (1985).

    CAS  PubMed  Google Scholar 

  22. Uemura, K. & Pisa, Z. Trends in cardiovascular disease mortality in industrialized countries since 1950. World Health Stat. Q. 41, 155–178 (1988).

    CAS  PubMed  Google Scholar 

  23. Lawlor, D. A., Smith, G. D., Leon, D. A., Sterne, J. A. & Ebrahim, S. Secular trends in mortality by stroke subtype in the 20th century: a retrospective analysis. Lancet 360, 1818–1823 (2002).

    Article  PubMed  Google Scholar 

  24. Havlik, R. J. & Feinleib, M. Proceedings of the Conference on the Decline in Coronary Heart Disease Mortality. October 24–25, 1978. (National Heart, Lung, and Blood Institute, US Department of Health, Education, and Welfare, 1979).

    Google Scholar 

  25. Stallones, R. A. Epidemiology of cerebrovascular disease. A review. J. Chronic Dis. 18, 859–872 (1965).

    Article  CAS  PubMed  Google Scholar 

  26. Charlton, J., Murphy, M., Khaw, K. T., Ebrahim, S. & Davey Smith, G. in The Health of Adult Britain 1841–1994, Vol. 2 (eds Charlton, J. & Murphy, M.) 60–81 (Stationary Office, 1997).

    Google Scholar 

  27. Wen, C. P. & Gershoff, S. N. Changes in serum cholesterol and coronary heart disease mortality associated with changes in the postwar Japanese diet. Am. J. Clin. Nutr. 26, 616–619 (1973).

    Article  CAS  PubMed  Google Scholar 

  28. Kodama, K. Stroke trends in Japan. Ann. Epidemiol. 3, 524–528 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Ueshima, H. Explanation for the Japanese paradox: prevention of increase in coronary heart disease and reduction in stroke. J. Atheroscler. Thromb. 14, 278–286 (2007).

    Article  PubMed  Google Scholar 

  30. Ueshima, H., Tatara, K. & Asakura, S. Declining mortality from ischemic heart disease and changes in coronary risk factors in Japan, 1956–1980. Am. J. Epidemiol. 125, 62–72 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Sarti, C., Rastenyte, D., Cepaitis, Z. & Tuomilehto, J. International trends in mortality from stroke, 1968 to 1994. Stroke 31, 1588–1601 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, L., Ikeda, K. & Yamori, Y. Changes in stroke mortality rates for 1950 to 1997: a great slowdown of decline trend in Japan. Stroke 32, 1745–1749 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Moriyama, I. M., Woolsey, T. D. & Stamler, J. Observations on possible factors responsible for the sex and race trends in cardiovascular-renal mortality in the United States. J. Chronic Dis. 7, 401–412 (1958).

    Article  CAS  PubMed  Google Scholar 

  34. Stamler, J. Lectures on Preventive Cardiology (Grune & Stratton, 1967).

    Google Scholar 

  35. Katz, L. N., Stamler, J. & Pick, R. Nutrition and Arteriosclerosis (Lea & Febiger, 1958).

    Google Scholar 

  36. WHO MONICA Project Principal Investigators. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. J. Clin. Epidemiol. 41, 105–114 (1988).

  37. Levi, F., Lucchini, F., Negri, E. & La Vecchia, C. Trends in mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world. Heart 88, 119–124 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Latin American Mortality Database. Latin American Mortality Database [online], (2015).

  39. Curioni, C., Cunha, C. B., Veras, R. P. & Andre, C. The decline in mortality from circulatory diseases in Brazil. Rev. Panam Salud Publica 25, 9–15 (2009).

    Article  PubMed  Google Scholar 

  40. Andre, C., Curioni, C. C., Braga da Cunha, C. & Veras, R. Progressive decline in stroke mortality in Brazil from 1980 to 1982, 1990 to 1992, and 2000 to 2002. Stroke 37, 2784–2789 (2006).

    Article  PubMed  Google Scholar 

  41. Rodriguez, T. et al. Trends in mortality from coronary heart and cerebrovascular diseases in the Americas: 1970–2000. Heart 92, 453–460 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Epstein, F. H. & Pisa, Z. in Proceedings of the Conference on the Decline in Coronary Heart Disease Mortality. October 24–25, 1978. NIH Publication No. 79–1610 (eds Havlik, R. J. & Feinleib, M.) 58–90 (National Heart, Lung, and Blood Institute, US Department of Health, Education, and Welfare, 1979).

    Google Scholar 

  43. Mesle, F., Shkolnikov, V. & Vallin, J. Mortality by cause in the USSR in 1970–1987: the reconstruction of time series. Eur. J. Popul. 8, 281–308 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Kesteloot, H., Sans, S. & Kromhout, D. Dynamics of cardiovascular and all-cause mortality in Western and Eastern Europe between 1970 and 2000. Eur. Heart J. 27, 107–113 (2006).

    Article  PubMed  Google Scholar 

  45. Shkolnikov, V., Mesle, F. & Vallin, J. Health crisis in Russia. II. Changes in causes of death: a comparison with France and England and Wales (1970 to 1993). Popul. 8, 155–189 (1996).

    CAS  PubMed  Google Scholar 

  46. Shkolnikov, V., Mesle, F. & Vallin, J. Health crisis in Russia. I. Recent trends in life expectancy and causes of death from 1970 to 1993. Popul. 8, 123–154 (1996).

    CAS  PubMed  Google Scholar 

  47. Leon, D. A. et al. Huge variation in Russian mortality rates 1984–1994: artefact, alcohol, or what? Lancet 350, 383–388 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Grigoriev, P. et al. The recent mortality decline in Russia: beginning of the cardiovascular revolution? Popul. Develop. Rev. 40, 107–129 (2014).

    Article  Google Scholar 

  49. Razvodovsky, Y. E. Alcohol consumption and ischemic heart disease mortality in Russia. Adicciones 24, 23–29 (2012).

    Article  PubMed  Google Scholar 

  50. Leon, D. A., Shkolnikov, V. M., McKee, M., Kiryanov, N. & Andreev, E. Alcohol increases circulatory disease mortality in Russia: acute and chronic effects or misattribution of cause? Int. J. Epidemiol. 39, 1279–1290 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Truelsen, T. et al. Trends in stroke and coronary heart disease in the WHO MONICA Project. Stroke 34, 1346–1352 (2003).

    Article  PubMed  Google Scholar 

  52. Jiang, B. et al. Incidence and trends of stroke and its subtypes in China: results from three large cities. Stroke 37, 63–68 (2006).

    Article  PubMed  Google Scholar 

  53. Jiang, G. et al. Coronary heart disease mortality in China: age, gender, and urban-rural gaps during epidemiological transition. Rev. Panam. Salud Publica 31, 317–324 (2012).

    Article  PubMed  Google Scholar 

  54. Yu, T. S., Wong, S. L., Lloyd, O. L. & Wong, T. W. Ischaemic heart disease: trends in mortality in Hong Kong, 1970–1989. J. Epidemiol. Community Health 49, 16–21 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stringhini, S. et al. Declining stroke and myocardial infarction mortality between 1989 and 2010 in a country of the African Region. Stroke 43, 2283–2288 (2012).

    Article  PubMed  Google Scholar 

  56. Mayosi, B. M. et al. Health in South Africa: changes and challenges since 2009. Lancet 380, 2029–2043 (2012).

    Article  PubMed  Google Scholar 

  57. Dawber, T. R., Kannel, W. B., Revotskie, N. & Kagan, A. The epidemiology of coronary heart disease—the Framingham enquiry. Proc. R. Soc. Med. 55, 265–271 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Doyle, J. T., Dawber, T. R., Kannel, W. B., Heslin, A. S. & Kahn, H. A. Cigarette smoking and coronary heart disease. Combined experience of the Albany and Framingham studies. N. Engl. J. Med. 26, 796–801 (1962).

    Article  Google Scholar 

  59. Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. & Stokes, J., 3rd. Factors of risk in the development of coronary heart disease—six year follow-up experience. The Framingham Study. Ann. Intern. Med. 55, 33–50 (1961).

    Article  CAS  PubMed  Google Scholar 

  60. Howitt, M. R. & Garrett, W. S. A complex microworld in the gut: gut microbiota and cardiovascular disease connectivity. Nat. Med. 18, 1188–1189 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Tremaroli, V. & Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

  63. Murray, C. J., Ezzati, M., Lopez, A. D., Rodgers, A. & Vander Hoorn, S. Comparative quantification of health risks conceptual framework and methodological issues. Popul. Health Metr. 1, 1 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ezzati, M., Lopez, A. D., Rodgers, A. & Murray, C. J. L. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors. 2248 (WHO, 2004).

    Google Scholar 

  65. Oza, S., Thun, M. J., Henley, S. J., Lopez, A. D. & Ezzati, M. How many deaths are attributable to smoking in the United States? Comparison of methods for estimating smoking-attributable mortality when smoking prevalence changes. Prev. Med. 52, 428–433 (2011).

    Article  PubMed  Google Scholar 

  66. Pell, J. P. et al. Smoke-free legislation and hospitalizations for acute coronary syndrome. N. Engl. J. Med. 359, 482–491 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Bartecchi, C. et al. Reduction in the incidence of acute myocardial infarction associated with a citywide smoking ordinance. Circulation 114, 1490–1496 (2006).

    Article  PubMed  Google Scholar 

  68. Law, M. R., Wald, N. J. & Thompson, S. G. By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ 308, 367–372 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Holmes, J., Meier, P. S., Booth, A., Guo, Y. & Brennan, A. The temporal relationship between per capita alcohol consumption and harm: a systematic review of time lag specifications in aggregate time series analyses. Drug Alcohol Depend. 123, 7–14 (2012).

    Article  PubMed  Google Scholar 

  70. Law, M. R., Frost, C. D. & Wald, N. J. By how much does dietary salt reduction lower blood pressure? III—Analysis of data from trials of salt reduction. BMJ 302, 819–824 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xin, X. et al. Effects of alcohol reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 38, 1112–1117 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Whelton, P. K. et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). TONE Collaborative Research Group. JAMA 279, 839–846 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Aburto, N. J. et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346, f1326 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rose, G. Incubation period of coronary heart disease. Br. Med. J. (Clin. Res. Ed.) 284, 1600–1601 (1982).

    Article  CAS  Google Scholar 

  75. McNamara, J. J., Molot, M. A., Stremple, J. F. & Cutting, R. T. Coronary artery disease in combat casualties in Vietnam. JAMA 216, 1185–1187 (1971).

    Article  CAS  PubMed  Google Scholar 

  76. Enos, W. F., Holmes, R. H. & Beyer, J. Coronary disease among United States soldiers killed in action in Korea; preliminary report. J. Am. Med. Assoc. 152, 1090–1093 (1953).

    Article  CAS  PubMed  Google Scholar 

  77. Katanoda, K. & Matsumura, Y. National Nutrition Survey in Japan—its methodological transition and current findings. J. Nutr. Sci. Vitaminol. 48, 423–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Yoshiike, N., Matsumura, Y., Iwaya, M., Sugiyama, M. & Yamaguchi, M. National Nutrition Survey in Japan. J. Epidemiol. 6 (Suppl.), S189–S200 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. WHO. Chronic disease and health promotion. STEPwise approach to surveillance (STEPS) [online], (2015).

  80. Metabolic Risk Factors of Chronic Diseases Collaboration. Global Burden of Metabolic Risk Factors of Chronic Diseases [online], (2015).

  81. Finucane, M. M., Paciorek, C. J., Danaei, G. & Ezzati, M. Bayesian estimation of population-level trends in measures of health status. Stat. Sci. 29, 18–25 (2014).

    Article  Google Scholar 

  82. Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Danaei, G. et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet 377, 568–577 (2011).

    Article  PubMed  Google Scholar 

  84. Danaei, G. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378, 31–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Farzadfar, F. et al. National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. Lancet 377, 578–586 (2011).

    Article  PubMed  Google Scholar 

  86. Stevens, G. A. et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul. Health Metr. 10, 22 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. WHO. Tobacco or Health: A Global Status Report (WHO, 1997).

  88. Shafey, O., Dolwick, S. & Guindon, G. Tobacco Control Country Profiles. (American Cancer Society, 2003).

    Google Scholar 

  89. Bilano, V. et al. Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet 385, 966–976 (2015).

    Article  PubMed  Google Scholar 

  90. Ezzati, M. & Riboli, E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med. 369, 954–964 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Burns, D. M. et al. in Changes in Cigarette-Related Disease Risks and Their Implications for Prevention and Control. Smoking and Tobacco Control Monograph No. 8 (eds Burns, D. M., Garfinkel, L. & Samet, J. M.) 13–112 (National Cancer Institute, 1997).

    Google Scholar 

  92. Kluger, R. Ashes to Ashes: America's Hundred-Year Cigarette War, the Public Health, and the Unabashed Triumph of Philip Morris (Vintage Books, 1997).

    Google Scholar 

  93. Brandt, A. M. The Cigarette Century: the Rise, Fall, and Deadly Persistence of the Product That Defined America (Basic Books, 2007).

    Google Scholar 

  94. Wald, N. & Nicolaides-Bouman, A. UK smoking statistics (Oxford University Press, 1991).

    Google Scholar 

  95. WHO. Global status report on noncommunicable diseases 2010 (WHO, 2011).

  96. WHO. Global Status Report on Noncommunicable Diseases 2014: Attaining the Nine Global Noncommunicable Diseases Targets; a Shared Responsibility (WHO, 2014).

  97. Wald, N., Doll, R. & Copeland, G. Trends in tar, nicotine, and carbon monoxide yields of UK cigarettes manufactured since 1934. Br. Med. J. (Clin. Res. Ed.) 282, 763–765 (1981).

    Article  CAS  Google Scholar 

  98. Jarvis, M. J. Trends in sales weighted tar, nicotine, and carbon monoxide yields of UK cigarettes. Thorax 56, 960–963 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Parish, S. et al. Cigarette smoking, tar yields, and non-fatal myocardial infarction: 14,000 cases and 32,000 controls in the United Kingdom. The International Studies of Infarct Survival (ISIS) Collaborators. BMJ 311, 471–477 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. US Department of Health and Human Services. A Report of the Surgeon General: How Tobacco Smoke Causes Disease: the Biology and Behavioral Basis for Smoking-Attributable Disease, 2010. Report No. DHHS Publication No (CDC) 89-8411 (USDHHS, Public Health Service, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2010).

  101. US Department of Health and Human Services. A Report of the Surgeon General: the Health Consequences of Smoking—50 years of progress. Report No. DHHS Publication No (CDC) 89-8411, (USDHHS, Public Health Service, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2014).

  102. Simpura, J. Mediterranean mysteries: mechanisms of declining alcohol consumption. Addiction 93, 1301–1304 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Simpura, J. Trends in alcohol consumption and drinking patterns: sociological and economic explanations and alcohol policies. Nordic Studies on Alcohol and Drugs 18 (Suppl.), S3–S13 (2001).

    Article  Google Scholar 

  104. Mäkelä, K. et al. Alcohol, society, and the state: 1. A comparative history of alcohol control (Addiction Research Foundation, 1981).

    Google Scholar 

  105. Rehm, J. et al. in Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors (eds Ezzati, M., Lopez, A. D., Rodgers, A. & Murray, C. J. L.) 959–1108 (WHO, 2004).

    Google Scholar 

  106. WHO. Global status report on alcohol and health 2014 (WHO, 2014).

  107. Allamani, A. & Prina, F. Why the decrease in consumption of alcoholic beverages in Italy between the 1970s and the 2000s? Shedding light on an Italian mystery. Contemp. Drug Probl. 34, 187–198 (2007).

    Article  Google Scholar 

  108. Cipriani, F. & Prina, F. The research outcome: summary and conclusions on the reduction in wine consumption in Italy. Contemp. Drug Probl. 34, 361–378 (2007).

    Article  Google Scholar 

  109. Shield, K. D. et al. Global alcohol exposure estimates by country, territory and region for 2005—a contribution to the Comparative Risk Assessment for the 2010 Global Burden of Disease Study. Addiction 108, 912–922 (2013).

    Article  PubMed  Google Scholar 

  110. Poznyak, V. et al. The world health organization's global monitoring system on alcohol and health. Alcohol Res. 35, 244–249 (2013).

    PubMed  Google Scholar 

  111. Rehm, J. et al. A systematic review of the epidemiology of unrecorded alcohol consumption and the chemical composition of unrecorded alcohol. Addiction 109, 880–893 (2014).

    Article  PubMed  Google Scholar 

  112. Rehm, J., Kanteres, F. & Lachenmeier, D. W. Unrecorded consumption, quality of alcohol and health consequences. Drug Alcohol Rev. 29, 426–436 (2010).

    Article  PubMed  Google Scholar 

  113. Stickley, A. et al. Alcohol poisoning in Russia and the countries in the European part of the former Soviet Union, 1970 2002. Eur. J. Public Health 17, 444–449 (2007).

    Article  PubMed  Google Scholar 

  114. Bergmann, M. M. et al. The association of pattern of lifetime alcohol use and cause of death in the European prospective investigation into cancer and nutrition (EPIC) study. Int. J. Epidemiol. 42, 1772–1790 (2013).

    Article  PubMed  Google Scholar 

  115. Rehm, J. et al. The relation between different dimensions of alcohol consumption and burden of disease: an overview. Addiction 105, 817–843 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rehm, J. et al. On the emerging paradigm of drinking patterns and their social and health consequences. Addiction 91, 1615–1621 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Roerecke, M. & Rehm, J. Irregular heavy drinking occasions and risk of ischemic heart disease: a systematic review and meta-analysis. Am. J. Epidemiol. 171, 633–644 (2010).

    Article  PubMed  Google Scholar 

  118. Makela, P. et al. Episodic heavy drinking in four Nordic countries: a comparative survey. Addiction 96, 1575–1588 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. He, F. J., Li, J. & Macgregor, G. A. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database of Systematic Reviews Issue 4. Art. No.: CD004937. http://dx.doi.org/10.1002/14651858.CD004937.pub2.

  120. Mozaffarian, D. et al. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 371, 624–634 (2014).

    Article  PubMed  Google Scholar 

  121. Cook, N. R. et al. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. Arch. Intern. Med. 169, 32–40 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cook, N. R. et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334, 885–888 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sacks, F. M. & Campos, H. Dietary therapy in hypertension. N. Engl. J. Med. 362, 2102–2112 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Mozaffarian, D., Appel, L. J. & Van Horn, L. Components of a cardioprotective diet: new insights. Circulation 123, 2870–2891 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mozaffarian, D., Micha, R. & Wallace, S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 7, e1000252 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Howard, B. V. et al. Low-fat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295, 655–666 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Chowdhury, R. et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann. Intern. Med. 160, 398–406 (2014).

    Article  PubMed  Google Scholar 

  128. Nordmann, A. J. et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch. Intern. Med. 166, 285–293 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Estruch, R. et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann. Intern. Med. 145, 1–11 (2006).

    Article  PubMed  Google Scholar 

  130. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 368, 1279–1290 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Kahn, H. A. Change in serum cholesterol associated with changes in the United States civilian diet, 1909–1965. Am. J. Clin. Nutr. 23, 879–882 (1970).

    Article  CAS  PubMed  Google Scholar 

  132. Antar, M. A., Ohlson, M. A. & Hodges, R. E. Changes in retail market food supplies in the United States in the last seventy years in relation to the incidence of coronary heart disease, with special reference to dietary carbohydrates and essential fatty acids. Am. J. Clin. Nutr. 14, 169–178 (1964).

    Article  CAS  PubMed  Google Scholar 

  133. Jackson, R. & Beaglehole, R. Trends in dietary fat and cigarette smoking and the decline in coronary heart disease in New Zealand. Int. J. Epidemiol. 16, 377–382 (1987).

    Article  CAS  PubMed  Google Scholar 

  134. Winkler, G., Doring, A. & Keil, U. Trends in dietary sources of nutrients among middle-aged men in southern Germany. Results of the MONICA Project Augsburg: dietary surveys 1984/1985 and 1994/1995. MONItoring trends and determinants in CArdiovascular disease. Appetite 34, 37–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Pietinen, P., Vartiainen, E., Seppanen, R., Aro, A. & Puska, P. Changes in diet in Finland from 1972 to 1992: impact on coronary heart disease risk. Prev. Med. 25, 243–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. Laatikainen, T. et al. Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult population. Eur. J. Clin. Nutr. 60, 965–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Krachler, B., Eliasson, M. C., Johansson, I., Hallmans, G. & Lindahl, B. Trends in food intakes in Swedish adults 1986–1999: findings from the Northern Sweden MONICA (Monitoring of Trends and Determinants in Cardiovascular Disease) Study. Public Health Nutr. 8, 628–635 (2005).

    Article  PubMed  Google Scholar 

  138. Waskiewicz, A., Piotrowski, W., Sygnowska, E., Rywik, S. & Jasinski, B. Did favourable trends in food consumption observed in the 1984–2001 period contribute to the decrease in cardiovascular mortality?—Pol.-MONICA Warsaw Project. Kardiol. Pol. 64, 16–23 (2006).

    PubMed  Google Scholar 

  139. Stephen, A. M. & Sieber, G. M. Trends in individual fat consumption in the UK 1900–1985. Br. J. Nutr. 71, 775–788 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Stephen, A. M. & Wald, N. J. Trends in individual consumption of dietary fat in the United States, 1920–1984. Am. J. Clin. Nutr. 52, 457–469 (1990).

    Article  CAS  PubMed  Google Scholar 

  141. Du, S. F., Wang, H. J., Zhang, B., Zhai, F. Y. & Popkin, B. M. China in the period of transition from scarcity and extensive undernutrition to emerging nutrition-related non-communicable diseases, 1949–1992. Obes. Rev. 15 (Suppl. 1), 8–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Wolmarans, P. Background paper on global trends in food production, intake and composition. Ann. Nutr. Metab. 55, 244–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Micha, R. et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys. BMJ 348, g2272 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Leth, T., Jensen, H. G., Mikkelsen, A. A. & Bysted, A. The effect of the regulation on trans fatty acid content in Danish food. Atheroscler. Suppl. 7, 53–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Angell, S. Y. et al. Cholesterol control beyond the clinic: New York City's trans fat restriction. Ann. Intern. Med. 151, 129–134 (2009).

    Article  PubMed  Google Scholar 

  146. Zatonski, W., Campos, H. & Willett, W. Rapid declines in coronary heart disease mortality in Eastern Europe are associated with increased consumption of oils rich in alpha-linolenic acid. Eur. J. Epidemiol. 23, 3–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Zatonski, W. A. & Willett, W. Changes in dietary fat and declining coronary heart disease in Poland: population based study. BMJ 331, 187–188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Butt, M. S. & Sultan, M. T. Levels of trans fats in diets consumed in developing economies. J. AOAC Int. 92, 1277–1283 (2009).

    CAS  PubMed  Google Scholar 

  149. Institute of Medicine. Sodium intake in populations: assessment of evidence (National Academies Press, 2013).

  150. Cobb, L. K. et al. Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the American Heart Association. Circulation 129, 1173–1186 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Ikeda, N., Gakidou, E., Hasegawa, T. & Murray, C. J. Understanding the decline of mean systolic blood pressure in Japan: an analysis of pooled data from the National Nutrition Survey, 1986–2002. Bull. World Health Organ. 86, 978–988 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ueshima, H., Tatara, K., Asakura, S. & Okamoto, M. Declining trends in blood pressure level and the prevalence of hypertension, and changes in related factors in Japan, 1956–1980. J. Chronic Dis. 40, 137–147 (1987).

    Article  CAS  PubMed  Google Scholar 

  153. Du, S. et al. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am. J. Clin. Nutr. 99, 334–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Vartiainen, E. et al. Thirty-five-year trends in cardiovascular risk factors in Finland. Int. J. Epidemiol. 39, 504–518 (2010).

    Article  PubMed  Google Scholar 

  155. He, F. J. & MacGregor, G. A. Reducing population salt intake worldwide: from evidence to implementation. Prog. Cardiovasc. Dis. 52, 363–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. He, F. J., Pombo-Rodrigues, S. & Macgregor, G. A. Salt reduction in England from 2003 to 2011: its relationship to blood pressure, stroke and ischaemic heart disease mortality. BMJ Open 4, e004549 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. He, F. J., Brinsden, H. C. & MacGregor, G. A. Salt reduction in the United Kingdom: a successful experiment in public health. J. Hum. Hypertens. 28, 345–352 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Tuomilehto, J., Geboers, J., Joossens, J. V., Salonen, J. T. & Tanskanen, A. Trends in stomach cancer and stroke in Finland. Comparison to northwest Europe and USA. Stroke 15, 823–828 (1984).

    Article  CAS  PubMed  Google Scholar 

  159. Powles, J. et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3, e003733 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Brown, I. J., Tzoulaki, I., Candeias, V. & Elliott, P. Salt intakes around the world: implications for public health. Int. J. Epidemiol. 38, 791–813 (2009).

    Article  PubMed  Google Scholar 

  161. Sacks, F. M. & Kass, E. H. Low blood pressure in vegetarians: effects of specific foods and nutrients. Am. J. Clin. Nutr. 48, 795–800 (1988).

    Article  CAS  PubMed  Google Scholar 

  162. He, F. J., Nowson, C. A., Lucas, M. & MacGregor, G. A. Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J. Hum. Hypertens. 21, 717–728 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Drewnowski, A. & Popkin, B. M. The nutrition transition: new trends in the global diet. Nutr. Rev. 55, 31–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Pan, W. H. et al. Diet and health trends in Taiwan: comparison of two nutrition and health surveys from 1993–1996 and 2005–2008. Asia Pac. J. Clin. Nutr. 20, 238–250 (2011).

    PubMed  Google Scholar 

  165. Blanck, H. M., Gillespie, C., Kimmons, J. E., Seymour, J. D. & Serdula, M. K. Trends in fruit and vegetable consumption among, U. S. men and women, 1994–2005. Prev. Chronic Dis. 5, A35 (2008).

    PubMed  Google Scholar 

  166. Welsh, S. O. & Marston, R. M. Review of trends in food use in the United States, 1909 to 1980. J. Am. Diet. Assoc. 81, 120–128 (1982).

    CAS  PubMed  Google Scholar 

  167. Cavadini, C., Siega-Riz, A. M. & Popkin, B. M. US adolescent food intake trends from 1965 to 1996. West. J. Med. 173, 378–383 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, D. D. et al. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern. Med. 174, 1587–1595 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lee, S. et al. Trends in diet quality for coronary heart disease prevention between 1980–1982 and 2000–2002: The Minnesota Heart Survey. J. Am. Diet. Assoc. 107, 213–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Singh, G. M. et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS ONE 8, e65174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Di Cesare, M. et al. The contributions of risk factor trends to cardiometabolic mortality decline in 26 industrialized countries. Int. J. Epidemiol. 42, 838–848 (2013).

    Article  PubMed  Google Scholar 

  172. Goff, D. C., Howard, G., Russell, G. B. & Labarthe, D. R. Birth cohort evidence of population influences on blood pressure in the United States, 1887–1994. Ann. Epidemiol. 11, 271–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Sakata, K. & Labarthe, D. R. Changes in cardiovascular disease risk factors in three Japanese national surveys 1971–1990. J. Epidemiol. 6, 93–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  174. McCarron, P., Smith, G. D. & Okasha, M. Secular changes in blood pressure in childhood, adolescence and young adulthood: systematic review of trends from 1948 to 1998. J. Hum. Hypertens. 16, 677–689 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Tunstall-Pedoe, H., Connaghan, J., Woodward, M., Tolonen, H. & Kuulasmaa, K. Pattern of declining blood pressure across replicate population surveys of the WHO MONICA project, mid-1980s to mid-1990s, and the role of medication. BMJ 332, 629–635 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hardoon, S. L. et al. Assessing the impact of medication use on trends in major coronary risk factors in older British men: a cohort study. Eur. J. Cardiovasc. Prev. Rehabil. 17, 502–508 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Bovet, P. et al. Divergent fifteen-year trends in traditional and cardiometabolic risk factors of cardiovascular diseases in the Seychelles. Cardiovasc. Diabetol. 8, 34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Danaei, G. et al. The global cardiovascular risk transition: associations of four metabolic risk factors with national income, urbanization, and Western diet in 1980 and 2008. Circulation 127, 1493–1502 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Okayama, A. et al. Changes in total serum cholesterol and other risk factors for cardiovascular disease in Japan 1980–1989. Int. J. Epidemiol. 22, 1038–1047 (1993).

    Article  CAS  PubMed  Google Scholar 

  180. Okayama, A. et al. Different trends in serum cholesterol levels among rural and urban populations aged 40–59 in Japan from 1960 to 1990. J. Clin. Epidemiol. 48, 329–337 (1995).

    Article  CAS  PubMed  Google Scholar 

  181. Sjol, A., Grunnet, K. & Schroll, M. Secular trends in serum cholesterol, high density lipoproteins and triglycerides 1964–1987. Int. J. Epidemiol. 20, 105–113 (1991).

    Article  CAS  PubMed  Google Scholar 

  182. Capewell, S. & Ford, E. S. Why have total cholesterol levels declined in most developed countries? BMC Public Health 11, 641 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Manson, J. E. et al. Estrogen plus progestin and the risk of coronary heart disease. N. Engl. J Med. 349, 523–534 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Sigfusson, N. et al. Decline in ischaemic heart disease in Iceland and change in risk factor levels. BMJ 302, 1371–1375 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Dwyer, T. & Hetzel, B. S. A comparison of trends of coronary heart disease mortality in Australia, USA and England and Wales with reference to three major risk factors-hypertension, cigarette smoking and diet. Int. J. Epidemiol. 9, 65–71 (1980).

    Article  CAS  PubMed  Google Scholar 

  186. Williams, R. R., Lyon, J. L., Brockert, J. E. & Maness, T. in Proceedings of the Conference on the Decline in Coronary Heart Disease Mortality. October 24–25, 1978. NIH Publication No. 79–1610 (eds Havlik, R. J. & Feinleib, M.) 48–57 (National Heart, Lung, and Blood Institute, US Department of Health, Education, and Welfare, 1979).

    Google Scholar 

  187. [No authors listed] Why the American decline in coronary heart-disease? Lancet 1, 183–184 (1980).

  188. Nicolosi, A., Casati, S., Taioli, E. & Polli, E. Death from cardiovascular disease in Italy, 1972–1981: decline in mortality rates and possible causes. Int. J. Epidemiol. 17, 766–772 (1988).

    Article  CAS  PubMed  Google Scholar 

  189. Menotti, A. & Scanga, M. Trends in coronary risk factors in Italy. Responsible Investigators of the RF2, OB43 and MICOL Research Groups. Int. J. Epidemiol. 21, 883–892 (1992).

    Article  CAS  PubMed  Google Scholar 

  190. Tunstall-Pedoe, H. et al. Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet 353, 1547–1557 (1999).

    Article  CAS  PubMed  Google Scholar 

  191. Babyak, M. A. What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom. Med. 66, 411–421 (2004).

    PubMed  Google Scholar 

  192. Kuulasmaa, K. et al. Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations. Lancet 355, 675–687 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Lu, Y. et al. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet 383, 970–983 (2014).

    Article  PubMed  Google Scholar 

  194. Gregg, E. W. et al. Secular trends in cardiovascular disease risk factors according to body mass index in US adults. JAMA 293, 1868–1874 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Pell, S. & D'Alonzo, G. A. Immediate mortality and five-year survival of employed men with a first myocardial infarction. N. Engl. J Med. 270, 915–922 (1964).

    Article  CAS  PubMed  Google Scholar 

  196. Pell, S. & Fayerweather, W. E. Trends in the incidence of myocardial infarction and in associated mortality and morbidity in a large employed population, 1957–1983. N. Engl. J Med. 312, 1005–1011 (1985).

    Article  CAS  PubMed  Google Scholar 

  197. Rosamond, W. D. et al. Trends in the incidence of myocardial infarction and in mortality due to coronary heart disease, 1987 to 1994. N. Engl. J Med. 339, 861–867 (1998).

    Article  CAS  PubMed  Google Scholar 

  198. McGovern, P. G. et al. Trends in acute coronary heart disease mortality, morbidity, and medical care from 1985 through 1997: the Minnesota heart survey. Circulation 104, 19–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  199. McGovern, P. G. et al. Recent trends in acute coronary heart disease—mortality, morbidity, medical care, and risk factors. The Minnesota Heart Survey Investigators. N. Engl. J Med. 334, 884–890 (1996).

    Article  CAS  PubMed  Google Scholar 

  200. Roger, V. L. et al. Trends in the incidence and survival of patients with hospitalized myocardial infarction, Olmsted County, Minnesota, 1979 to 1994. Ann. Intern. Med. 136, 341–348 (2002).

    Article  PubMed  Google Scholar 

  201. Goldberg, R. J., Yarzebski, J., Lessard, D. & Gore, J. M. A two-decades (1975 to 1995) long experience in the incidence, in-hospital and long-term case-fatality rates of acute myocardial infarction: a community-wide perspective. J. Am. Coll. Cardiol 33, 1533–1539 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Morris, R. W. et al. Geographic variation in incidence of coronary heart disease in Britain: the contribution of established risk factors. Heart 86, 277–283 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hardoon, S. L., Whincup, P. H., Petersen, I., Capewell, S. & Morris, R. W. Trends in longer-term survival following an acute myocardial infarction and prescribing of evidenced-based medications in primary care in the UK from 1991: a longitudinal population-based study. J. Epidemiol. Community Health 65, 770–774 (2011).

    Article  PubMed  Google Scholar 

  204. Capewell, S. et al. Short-term and long-term outcomes in 133,429 emergency patients admitted with angina or myocardial infarction in Scotland, 1990–2000: population-based cohort study. Heart 92, 1563–1570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Grey, C. et al. Twenty-eight day and one-year case fatality after hospitalisation with an acute coronary syndrome: a nationwide data linkage study. Aust. N. Z. J. Public Health 38, 216–220 (2014).

    Article  PubMed  Google Scholar 

  206. Hammar, N. et al. A national record linkage to study acute myocardial infarction incidence and case fatality in Sweden. Int. J. Epidemiol. 30 (Suppl. 1), S30–S34 (2001).

    Article  PubMed  Google Scholar 

  207. Krumholz, H. M., Normand, S.-L. T. & Wang, Y. Trends in hospitalizations and outcomes for acute cardiovascular disease and stroke: 1999–2011. Circulation 130, 966–975 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Schmidt, M., Bonde, J., Lash, T. L., Bøtker, H. E. & Sørensen, H. T. 25 year trends in first time hospitalisation for acute myocardial infarction, subsequent short and long term mortality, and the prognostic impact of sex and comorbidity: a Danish nationwide cohort study. BMJ 356, 1–12 (2012).

    Google Scholar 

  209. Smolina, K., Wright, F. L., Rayner, M. & Goldacre, M. J. Determinants of the decline in mortality from acute myocardial infarction in England between 2002 and 2010: linked national database study. BMJ 344, d8059 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ezzati, M., Lopez, A. D., Rodgers, A., Vander Hoorn, S. & Murray, C. J. Selected major risk factors and global and regional burden of disease. Lancet 360, 1347–1360 (2002).

    Article  PubMed  Google Scholar 

  211. Hunink, M. G. et al. The recent decline in mortality from coronary heart disease, 1980–1990. The effect of secular trends in risk factors and treatment. JAMA 277, 535–542 (1997).

    Article  CAS  PubMed  Google Scholar 

  212. Goldman, L. et al. The effect of risk factor reductions between 1981 and 1990 on coronary heart disease incidence, prevalence, mortality and cost. J. Am. Coll. Cardiol. 38, 1012–1017 (2001).

    Article  CAS  PubMed  Google Scholar 

  213. Unal, B., Critchley, J. A. & Capewell, S. Modelling the decline in coronary heart disease deaths in England and Wales, 1981–2000: comparing contributions from primary prevention and secondary prevention. BMJ 331, 614 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Unal, B., Capewell, S. & Critchley, J. A. Coronary heart disease policy models: a systematic review. BMC Public Health 6, 213 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Goldman, L. & Cook, E. F. The decline in ischemic heart disease mortality rates. An analysis of the comparative effects of medical interventions and changes in lifestyle. Ann. Intern. Med. 101, 825–836 (1984).

    Article  CAS  PubMed  Google Scholar 

  216. Mathers, C. D., Stevens, G. A., Boerma, T., White, R. A. & Tobias, M. I. Causes of international increases in older age life expectancy. Lancet 385, 540–548 (2014).

    Article  PubMed  Google Scholar 

  217. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Danaei, G. et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6, e1000058 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment. Lancet Diabetes Endocrinol. 2, 634–647 (2014).

  220. Ezzati, M. et al. Estimates of global and regional potential health gains from reducing multiple major risk factors. Lancet 362, 271–280 (2003).

    Article  PubMed  Google Scholar 

  221. Woodward, M. et al. A comparison of the associations between risk factors and cardiovascular disease in Asia and Australasia. Eur. J. Cardiovasc. Prev. Rehabil. 12, 484–491 (2005).

    Article  CAS  PubMed  Google Scholar 

  222. Walter, S. D. Prevention of multifactorial disease. Am. J. Epidemiol. 112, 409–416 (1980).

    Article  CAS  PubMed  Google Scholar 

  223. Yerushalmy, J. & Palmer, C. E. On the methodology of investigations of etiologic factors in chronic diseases. J. Chronic Dis. 108, 27–40 (1959).

    Article  Google Scholar 

  224. Thorolfsdottir, R. B. et al. Population assessment of future trajectories in coronary heart disease mortality. PLoS ONE 9, e85800 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L. & Brown, M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378, 815–825 (2011).

    Article  PubMed  Google Scholar 

  226. Webber, L. et al. The future burden of obesity-related diseases in the 53 WHO European-Region countries and the impact of effective interventions: a modelling study. BMJ Open 4, e004787 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Leon, D. A., Shkolnikov, V. M. & McKee, M. Alcohol and Russian mortality: a continuing crisis. Addiction 104, 1630–1636 (2009).

    Article  PubMed  Google Scholar 

  228. McKee, M., Shkolnikov, V. & Leon, D. A. Alcohol is implicated in the fluctuations in cardiovascular disease in Russia since the 1980s. Ann. Epidemiol. 11, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  229. Leon, D. A. et al. Hazardous alcohol drinking and premature mortality in Russia: a population based case-control study. Lancet 369, 2001–2009 (2007).

    Article  PubMed  Google Scholar 

  230. Tomkins, S. et al. Identifying the determinants of premature mortality in Russia: overcoming a methodological challenge. BMC Public Health 7, 343 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Zaridze, D. et al. Alcohol and cause-specific mortality in Russia: a retrospective case-control study of 48,557 adult deaths. Lancet 373, 2201–2214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Zaridze, D. et al. Alcohol and mortality in Russia: prospective observational study of 151,000 adults. Lancet 383, 1465–1473 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Franco, M. et al. Population-wide weight loss and regain in relation to diabetes burden and cardiovascular mortality in Cuba 1980–2010: repeated cross sectional surveys and ecological comparison of secular trends. BMJ 346, f1515 (2013).

    Article  PubMed  Google Scholar 

  234. Peto, R., Lopez, A. D., Boreham, J., Thun, M. & Heath, C. Jr. Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet 339, 1268–1278 (1992).

    Article  CAS  PubMed  Google Scholar 

  235. Preston, S. H., Glei, D. A. & Wilmoth, J. R. A new method for estimating smoking-attributable mortality in high-income countries. Int. J. Epidemiol. 39, 430–438 (2010).

    Article  PubMed  Google Scholar 

  236. Beaglehole, R. Medical management and the decline in mortality from coronary heart disease. Br. Med. J. (Clin. Res. Ed.) 292, 33–35 (1986).

    Article  CAS  Google Scholar 

  237. Rose, G. The contribution of intensive coronary care. Br. J. Prev. Soc. Med. 29, 147–150 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1, 397–402 (1986).

  239. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2, 349–360 (1988).

  240. Gunnar, R. M. et al. Guidelines for the early management of patients with acute myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee to Develop Guidelines for the Early Management of Patients with Acute Myocardial Infarction). J. Am. Coll. Cardiol 16, 249–292 (1990).

    Article  CAS  PubMed  Google Scholar 

  241. Rogers, W. J. et al. Temporal trends in the treatment of over 1.5 million patients with myocardial infarction in the US from 1990 through 1999: the National Registry of Myocardial Infarction 1, 2 and 3. J. Am. Coll. Cardiol. 36, 2056–2063 (2000).

    Article  CAS  PubMed  Google Scholar 

  242. Nabel, E. G. & Braunwald, E. A tale of coronary artery disease and myocardial infarction. N. Engl. J. Med. 366, 54–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  243. Kumbhani, D. J. et al. Temporal trends for secondary prevention measures among patients hospitalized with coronary artery disease. Am. J. Med. 128, 426.e1–426.e9 (2014).

    Article  Google Scholar 

  244. [No authors listed] Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA 202, 1028–1034 (1967).

  245. Medical Research Council Working Party. MRC trial of treatment of mild hypertension: principal results. Br. Med. J. (Clin. Res. Ed.) 291, 97–104 (1985).

  246. [No authors listed] The Australian therapeutic trial in mild hypertension. Report by the Management Committee. Lancet 1, 1261–1267 (1980).

  247. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA 265, 3255–3264 (1991).

  248. Beckett, N. S. et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 358, 1887–1898 (2008).

    Article  CAS  PubMed  Google Scholar 

  249. Law, M. R., Morris, J. K. & Wald, N. J. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ 338, b1665 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Stott, D. J. in Handbook of Hypertension, Vol. 20, Epidemiology of Hypertension (ed. Bulpitt, C. J.) (Elsevier, 2000).

    Google Scholar 

  251. Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 362, 1527–1535 (2003).

  252. Egan, B. M., Zhao, Y. & Axon, R. N. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA 303, 2043–2050 (2010).

    Article  CAS  PubMed  Google Scholar 

  253. Hajjar, I. & Kotchen, T. A. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA 290, 199–206 (2003).

    Article  PubMed  Google Scholar 

  254. Chobanian, A. V. et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42, 1206–1252 (2003).

    Article  CAS  PubMed  Google Scholar 

  255. Andersen, U. O. & Jensen, G. B. Trends and determinant factors for population blood pressure with 25 years of follow-up: results from the Copenhagen City Heart Study. Eur. J. Cardiovasc. Prev. Rehabil. 17, 655–659, (2010).

    Article  PubMed  Google Scholar 

  256. Andersen, U. O. & Jensen, G. B. Trends and determinant factors in hypertension control in a population study with 25 years of follow-up. J. Hypertens. 28, 1091–1096 (2010).

    Article  CAS  PubMed  Google Scholar 

  257. Fasce, E. et al. Trends in prevalence, awareness, treatment and control of hypertension in urban communities in Chile. J. Hypertens. 25, 1807–1811 (2007).

    Article  CAS  PubMed  Google Scholar 

  258. Chow, C. K. et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 310, 959–968 (2013).

    Article  CAS  PubMed  Google Scholar 

  259. Tobert, J. A. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov. 2, 517–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  260. Ford, E. S., Li, C., Pearson, W. S., Zhao, G. & Mokdad, A. H. Trends in hypercholesterolemia, treatment and control among United States adults. Int. J. Cardiol. 140, 226–235 (2010).

    Article  PubMed  Google Scholar 

  261. Wald, N. J. & Law, M. R. A strategy to reduce cardiovascular disease by more than 80%. BMJ 326, 1419 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Cholesterol Treatment Trialists (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).

  263. National Cholesterol Education Program (NCEPT) Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106, 3143–3421 (2002).

  264. Carleton, R. A. et al. Report of the Expert Panel on Population Strategies for Blood Cholesterol Reduction. A statement from the National Cholesterol Education Program, National Heart, Lung, and Blood Institute, National Institutes of Health. Circulation 83, 2154–2232 (1991).

    Article  CAS  PubMed  Google Scholar 

  265. Roth, G. A. et al. High total serum cholesterol, medication coverage and therapeutic control: an analysis of national health examination survey data from eight countries. Bull. World Health Organ. 89, 92–101 (2011).

    Article  PubMed  Google Scholar 

  266. Cholesterol Treatment Trialists' (CTT) Collaboration. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2010).

  267. Yusuf, S. et al. Use of secondary prevention drugs for cardiovascular disease in the community in high-income, middle-income, and low-income countries (the PURE Study): a prospective epidemiological survey. Lancet 378, 1231–1243 (2011).

    Article  PubMed  Google Scholar 

  268. Pell, S. & D'Alonzo, C. A. Factors associated with long-term survival of diabetics. JAMA 214, 1833–1840 (1970).

    Article  CAS  PubMed  Google Scholar 

  269. Holman, R. R., Sourij, H. & Califf, R. M. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet 383, 2008–2017 (2014).

    Article  CAS  PubMed  Google Scholar 

  270. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589, (2008).

    Article  CAS  PubMed  Google Scholar 

  271. Riddle, M. C. et al. Epidemiologic relationships between A1C and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care 33, 983–990 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Skyler, J. S. et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Circulation 119, 351–357 (2009).

    Article  PubMed  Google Scholar 

  273. Ismail-Beigi, F. et al. Individualizing glycemic targets in type 2 diabetes mellitus: implications of recent clinical trials. Ann. Intern. Med. 154, 554–559 (2011).

    Article  PubMed  Google Scholar 

  274. Cefalu, W. T. Glycemic targets and cardiovascular disease. N.Engl. J. Med. 358, 2633–2635 (2008).

    Article  CAS  PubMed  Google Scholar 

  275. Ali, M. K. et al. Achievement of goals in U.S. diabetes care, 1999–2010. N. Engl. J. Med. 368, 1613–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  276. Tunstall-Pedoe, H. et al. Estimation of contribution of changes in coronary care to improving survival, event rates, and coronary heart disease mortality across the WHO MONICA Project populations. Lancet 355, 688–700 (2000).

    Article  CAS  PubMed  Google Scholar 

  277. Tunstall-Pedoe, H. in Coronary Heart Disease Epidemiology: From Aetiology to Public Health (eds Marmot, M. & Elliott, P.) 850–864 (Oxford University Press, 2005).

    Book  Google Scholar 

  278. Arciero, T. J. et al. Temporal trends in the incidence of coronary disease. Am. J. Med. 117, 228–233 (2004).

    Article  PubMed  Google Scholar 

  279. Levy, D. & Thom, T. J. Death rates from coronary disease—progress and a puzzling paradox. N. Engl. J. Med. 339, 915–917 (1998).

    Article  CAS  PubMed  Google Scholar 

  280. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. Eur. Heart J. 21, 1502–1513 (2000).

  281. Tunstall-Pedoe, H. Comment on the ESC/ACC redefinition of myocardial infarction by a consensus dissenter. Eur. Heart J. 22, 613–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  282. Myerson, M. et al. Declining severity of myocardial infarction from 1987 to 2002: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 119, 503–514 (2009).

    Article  PubMed  Google Scholar 

  283. Rosamond, W. D. et al. Twenty-two-year trends in incidence of myocardial infarction, coronary heart disease mortality, and case fatality in 4 US communities, 1987–2008. Circulation 125, 1848–1857 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Hamm, C. W. et al. The prognostic value of serum troponin T in unstable angina. N. Engl. J. Med. 327, 146–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  285. Mills, N. L. et al. Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. JAMA 305, 1210–1216 (2011).

    Article  CAS  PubMed  Google Scholar 

  286. Yusuf, S., Reddy, S., Ounpuu, S. & Anand, S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104, 2746–2753 (2001).

    Article  CAS  PubMed  Google Scholar 

  287. Khatibzadeh, S., Farzadfar, F., Oliver, J., Ezzati, M. & Moran, A. Worldwide risk factors for heart failure: a systematic review and pooled analysis. Int. J. Cardiol. 168, 1186–1194 (2013).

    Article  PubMed  Google Scholar 

  288. Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095–2128 (2012).

    Article  Google Scholar 

  289. Mayosi, B. M. in Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. 10th edn (eds Mann, D. L., Zipes, D. P., Libby, P. & Bonow, R. O.) (Elsevier Saunders, 2015).

    Google Scholar 

  290. Kaplan, E. L. T. Duckett Jones Memorial Lecture. Global assessment of rheumatic fever and rheumatic heart disease at the close of the century. Influences and dynamics of populations and pathogens: a failure to realize prevention? Circulation 88, 1964–1972 (1993).

    Article  CAS  PubMed  Google Scholar 

  291. Moriyama, I. M., Baum, W. S., Haenszel, W. M. & Mattison, B. F. Inquiry into diagnostic evidence supporting medical certifications of death. Am. J. Public Health Nations Health 48, 1376–1387 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Tibazarwa, K. B., Volmink, J. A. & Mayosi, B. M. Incidence of acute rheumatic fever in the world: a systematic review of population-based studies. Heart 94, 1534–1540 (2008).

    Article  CAS  PubMed  Google Scholar 

  293. Seckeler, M. D. & Hoke, T. R. The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin. Epidemiol. 3, 67–84 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Gordis, L. The virtual disappearance of rheumatic fever in the United States: lessons in the rise and fall of disease. T. Duckett Jones memorial lecture. Circulation 72, 1155–1162 (1985).

    Article  CAS  PubMed  Google Scholar 

  295. Madden, S. & Kelly, L. Update on acute rheumatic fever: it still exists in remote communities. Can. Fam. Physician 55, 475–478 (2009).

    PubMed  PubMed Central  Google Scholar 

  296. White, H. et al. Rheumatic heart disease in indigenous populations. Heart Lung Circ. 19, 273–281 (2010).

    Article  PubMed  Google Scholar 

  297. Arguedas, A. & Mohs, E. Prevention of rheumatic fever in Costa Rica. J. Pediatr. 121, 569–572 (1992).

    Article  CAS  PubMed  Google Scholar 

  298. Nordet, P., Lopez, R., Duenas, A. & Sarmiento, L. Prevention and control of rheumatic fever and rheumatic heart disease: the Cuban experience (1986–1996–2002). Cardiovasc. J. Afr. 19, 135–140 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Bach, J. F. et al. 10-year educational programme aimed at rheumatic fever in two French Caribbean islands. Lancet 347, 644–648 (1996).

    Article  CAS  PubMed  Google Scholar 

  300. Karthikeyan, G. & Mayosi, B. M. Is primary prevention of rheumatic fever the missing link in the control of rheumatic heart disease in Africa? Circulation 120, 709–713 (2009).

    Article  PubMed  Google Scholar 

  301. Omurzakova, N. A. et al. Rheumatologic services in Central Asian countries: current state of development of rheumatology in Central Asia. Int. J. Rheum. Dis. 12, 288–292 (2009).

    Article  PubMed  Google Scholar 

  302. Omurzakova, N. A. et al. High incidence of rheumatic fever and rheumatic heart disease in the republics of Central Asia. Int. J. Rheum. Dis. 12, 79–83 (2009).

    Article  PubMed  Google Scholar 

  303. Alfieri, O., Mayosi, B. M., Park, S. J., Sarrafzadegan, N. & Virmani, R. Exploring unknowns in cardiology. Nat. Rev. Cardiol. 11, 664–670 (2014).

    Article  PubMed  Google Scholar 

  304. Mocumbi, A. O. & Falase, A. O. Recent advances in the epidemiology, diagnosis and treatment of endomyocardial fibrosis in Africa. Heart 99, 1481–1487 (2013).

    Article  PubMed  Google Scholar 

  305. Sliwa, K. & Mayosi, B. M. Recent advances in the epidemiology, pathogenesis and prognosis of acute heart failure and cardiomyopathy in Africa. Heart 99, 1317–1322 (2013).

    Article  PubMed  Google Scholar 

  306. Roivainen, M. et al. Infections, inflammation, and the risk of coronary heart disease. Circulation 101, 252–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  307. Barnighausen, T. et al. Hiding in the shadows of the HIV epidemic: obesity and hypertension in a rural population with very high HIV prevalence in South Africa. J. Hum. Hypertens. 22, 236–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  308. Ntsekhe, M. & Mayosi, B. M. Cardiac manifestations of HIV infection: an African perspective. Nat. Clin. Pract. Cardiovasc. Med. 6, 120–127 (2009).

    Article  PubMed  Google Scholar 

  309. Zanni, M. V., Schouten, J., Grinspoon, S. K. & Reiss, P. Risk of coronary heart disease in patients with HIV infection. Nat. Rev. Cardiol. 11, 728–741 (2014).

    Article  CAS  PubMed  Google Scholar 

  310. Farzadfar, F. et al. Effectiveness of diabetes and hypertension management by rural primary health-care workers (Behvarz workers) in Iran: a nationally representative observational study. Lancet 379, 47–54 (2012).

    Article  PubMed  Google Scholar 

  311. Bennett, J. E. et al. The future of life expectancy and life expectancy inequalities in England and Wales: Bayesian spatiotemporal forecasting. Lancet http://dx.doi.org/10.1016/S0140-6736(15)60296-3.

  312. WHO. WHO methods and data sources for global causes of death, 2000–2012 [online], (2014).

  313. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  314. Look Ahead Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

  315. Paffenbarger, R. S. J. in Proceedings of the Conference on the Decline in Coronary Heart Disease Mortality. October 24–25, 1978. NIH Publication No. 79–1610 (eds Havlik, R. J. & Feinleib, M.) 298–311 (National Heart, Lung, and Blood Institute, US Department of Health, Education, and Welfare, 1979).

    Google Scholar 

  316. Kuller, L. H., Laporte, R. E. & Weinberg, G. B. in Proceedings of the Conference on the Decline in Coronary Heart Disease Mortality. October 24–25, 1978. NIH Publication No. 79–1610 (eds Havlik, R. J. & Feinleib, M.) 312–339 (National Heart, Lung, and Blood Institute, US Department of Health, Education, and Welfare, 1979).

    Google Scholar 

  317. Luepker, R. V. WHO MONICA project: what have we learned and where to go from here? Public Health Rev. 33, 373–396 (2012).

    Article  Google Scholar 

  318. Tunstall-Pedoe, H. et al. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 90, 583–612 (1994).

    Article  CAS  PubMed  Google Scholar 

  319. Griffiths, C., Brock, A. & Rooney, C. The impact of introducing ICD-10 on trends in mortality from circulatory diseases in England and Wales. Health Stat. Q. 22, 14–20 (2004).

    Google Scholar 

  320. Murray, C. J., Kulkarni, S. C. & Ezzati, M. Understanding the coronary heart disease versus total cardiovascular mortality paradox: a method to enhance the comparability of cardiovascular death statistics in the United States. Circulation 113, 2071–2081 (2006).

    Article  PubMed  Google Scholar 

  321. Stevens, G. A., King, G. & Shibuya, K. Deaths from heart failure: using coarsened exact matching to correct cause-of-death statistics. Popul. Health Metr. 8, 6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  322. WHO. The Global Burden of Disease: 2004 Update (WHO, 2008).

Download references

Acknowledgements

We thank Colin Mathers and Gretchen Stevens (WHO, Switzerland), and Vasilis Kontis (Imperial College London, UK) for data and figures on mortality trends; Juergen Rehm (University of Toronto, Canada) for data on trends in alcohol consumption in Russia; Yasaman Vali (Imperial College London, UK) for assistance with references; and Mohammed Ali (Emory University, GA, USA), Perviz Asaria (Imperial College London, UK), Robert Beaglehole (University of Auckland, New Zealand), Peter Burney (Imperial College London, UK), Zhengming Chen (University of Oxford, UK), Goodarz Danaei (Harvard School of Public Health, MA, USA), Darwin Labarathe (Northwestern University, IL, USA), Juergen Rehm (University of Toronto, Canada), and Jonathan Samet (University of Southern California, CA, USA) for discussions on materials covered in the Review. M.E. is supported by a strategic grant from the UK Medical Research Council (MRC), and by the MRC and Public Health England (PHE) through support to the MRC–PHE Centre for Environment and Health. Z.O. is supported by a grant from the Common Fund of the US National Institutes of Health. P.E. has received funding from the National Institute for Health Research (NIHR) Biomedical Research Centre at Imperial College Healthcare NHS Trust and Imperial College London, the NIHR Health Protection Research Unit on the Impact of Environmental Hazards, and from the MRC and PHE in support of the MRC-PHE Centre for Environment and Health.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Majid Ezzati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Trends in death rates from CVDs for adults aged >30 years, by sex. (PDF 56 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezzati, M., Obermeyer, Z., Tzoulaki, I. et al. Contributions of risk factors and medical care to cardiovascular mortality trends. Nat Rev Cardiol 12, 508–530 (2015). https://doi.org/10.1038/nrcardio.2015.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing