Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Form to function: current and future roles for atherosclerosis imaging in drug development

Key Points

  • The recent failure of novel anti-atherosclerotic therapies in Phase III clinical trials has emphasized the pressing need for robust imaging markers that can reliably assist in the development of drugs for the treatment of atherosclerosis.

  • Conventional methods of imaging atherosclerosis are able to provide quantitative and morphological data, and to date, have principally been used to assess the efficacy of cholesterol-lowering agents.

  • In this article we compare the main imaging modalities used to image atherosclerosis in the clinical trial setting so far, namely quantitative coronary angiography (QCA), carotid intima-media thickness (CIMT), magnetic resonance imaging (MRI), computed tomography (CT) and intravascular ultrasound (IVUS). The ability of these imaging modalities to predict clinical outcomes for a given sample size, and the regulatory considerations pertaining to their use, are also discussed.

  • However, these methods are likely to be inadequate to assess an emerging generation of therapies that modify plaque biology directly. For example, squalene synthase inhibitors, p38 mitogen-activated protein kinase (MAPK) inhibitors, and chemokine (C-C motif) receptor 2 (CCR2) antagonists.

  • We outline how emerging molecular and cellular imaging techniques offer the possibility to quantify changes in biological function at the level of the plaque, even without gross structural change. In this regard, two imaging modalities are discussed in detail: MRI and positron-emission tomography (PET).

  • Currently, no single ideal imaging modality exists. In the future, the careful application of imaging biomarkers will be necessary to ensure that new anti-atherosclerosis therapies are evaluated in the most efficient manner possible.

Abstract

There is a pressing need for robust imaging markers to assist in the development of drugs for the treatment of atherosclerosis. Conventional imaging methods provide quantitative and morphological data but may be inadequate for assessing a new generation of therapies that modify plaque biology directly. Here, we compare the main imaging modalities used to image atherosclerosis in the clinical-trial setting, and assess their ability to predict clinical outcomes for a given sample size. We consider how emerging molecular and cellular imaging techniques could offer the possibility to quantify changes in biological function at the level of the plaque, even without gross structural change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Techniques currently in use to image atherosclerosis in carotid and coronary arteries.
Figure 2: Schematic representation of information obtained from individual imaging modalities highlighting the different plaque components that can be visualized by each.
Figure 3: Emerging imaging techniques.
Figure 4: Illustration of processes of atherogenesis ranging from prelesional endothelial dysfunction (left) through monocyte recruitment to the development of complicated plaques complicated by thrombosis (right).
Figure 5: Targets for novel anti-atherosclerotic therapies.

Similar content being viewed by others

Peter Libby, Julie E. Buring, … Eldrin F. Lewis

References

  1. [No authors listed]. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet 2, 349–360 (1988).

  2. [No authors listed]. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344, 1383–1389 (1994).

  3. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  4. [No authors listed]. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 355, 253–259 (2000).

  5. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Tall, A. R. CETP inhibitors to increase HDL cholesterol levels. N. Engl. J. Med. 356, 1364–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Tall, A. R., Yvan-Charvet, L. & Wang, N. The failure of torcetrapib: was it the molecule or the mechanism? Arterioscler. Thromb. Vasc. Biol. 27, 257–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Brown, B. G., Bolson, E., Frimer, M. & Dodge, H. T. Quantitative coronary arteriography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 55, 329–337 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Blankenhorn, D. H. et al. Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257, 3233–3240 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, B. G. et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N. Engl. J. Med. 345, 1583–1592 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R. & Kolettis, G. J. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316, 1371–1375 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Topol, E. J. & Nissen, S. E. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92, 2333–2342 (1995). An excellent review article highlighting the shortcomings of coronary angiography for plaque assessment.

    Article  CAS  PubMed  Google Scholar 

  14. Schoenhagen, P. et al. Determinants of arterial wall remodeling during lipid-lowering therapy: serial intravascular ultrasound observations from the Reversal of Atherosclerosis with Aggressive Lipid Lowering Therapy (REVERSAL) trial. Circulation 113, 2826–2834 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Simons, P. C., Algra, A., Bots, M. L., Grobbee, D. E. & van der Graaf, Y. Common carotid intima-media thickness and arterial stiffness: indicators of cardiovascular risk in high-risk patients. The SMART Study (Second Manifestations of ARTerial disease). Circulation 100, 951–957 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Bots, M. L., Hoes, A. W., Koudstaal, P. J., Hofman, A. & Grobbee, D. E. Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96, 1432–1437 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Yamasaki, Y. et al. Carotid intima-media thickness in Japanese type 2 diabetic subjects: predictors of progression and relationship with incident coronary heart disease. Diabetes Care 23, 1310–1315 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Hodis, H. N. et al. The role of carotid arterial intima-media thickness in predicting clinical coronary events. Ann. Intern. Med. 128, 262–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Salonen, J. T., Seppanen, K., Rauramaa, R. & Salonen, R. Risk factors for carotid atherosclerosis: the Kuopio Ischaemic Heart Disease Risk Factor Study. Ann. Med. 21, 227–229 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Chambless, L. E. et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am. J. Epidemiol. 146, 483–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Blankenhorn, D. H. et al. Beneficial effects of colestipol-niacin therapy on the common carotid artery. Two- and four-year reduction of intima-media thickness measured by ultrasound. Circulation 88, 20–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. MacMahon, S. et al. Effects of lowering average of below-average cholesterol levels on the progression of carotid atherosclerosis: results of the LIPID Atherosclerosis Substudy. LIPID Trial Research Group. Circulation 97, 1784–1790 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. de Groot, E. et al. Effect of pravastatin on progression and regression of coronary atherosclerosis and vessel wall changes in carotid and femoral arteries: a report from the Regression Growth Evaluation Statin Study. Am. J. Cardiol. 76, 40C–46C (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Crouse, J. R., 3rd et al. Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II). Am. J. Cardiol. 75, 455–459 (1995).

    Article  PubMed  Google Scholar 

  25. Crouse, J. R., 3rd et al. Effect of rosuvastatin on progression of carotid intima-media thickness in low-risk individuals with subclinical atherosclerosis: the METEOR Trial. JAMA 297, 1344–1353 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Duivenvoorden, R., Nederveen, A. J., de Groot, E. & Kastelein, J. J. Atherosclerosis imaging as benchmark in the development of novel cardiovascular drugs. Curr. Opin. Lipidol. 18, 613–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Kastelein, J. J. et al. Simvastatin with or without ezetimibe in familial hypercholesterolemia. N. Engl. J. Med. 358, 1431–1443 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bots, M. L., Evans, G. W., Riley, W. A. & Grobbee, D. E. Carotid intima-media thickness measurements in intervention studies: design options, progression rates, and sample size considerations: a point of view. Stroke 34, 2985–2994 (2003). A comprehensive review of the use of carotid ultrasound imaging in trials.

    Article  PubMed  Google Scholar 

  29. Taylor, A. J. et al. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J. Am. Coll. Cardiol. 46, 807–814 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Achenbach, S. et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109, 14–17 (2004).

    Article  PubMed  Google Scholar 

  31. Leber, A. W. et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J. Am. Coll. Cardiol. 43, 1241–1247 (2004).

    Article  PubMed  Google Scholar 

  32. Leber, A. W. et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J. Am. Coll. Cardiol. 47, 672–677 (2006).

    Article  PubMed  Google Scholar 

  33. Hyafil, F. et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nature Med. 13, 636–641 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. O'Malley, P. G., Taylor, A. J., Jackson, J. L., Doherty, T. M. & Detrano, R. C. Prognostic value of coronary electron-beam computed tomography for coronary heart disease events in asymptomatic populations. Am. J. Cardiol. 85, 945–948 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Detrano, R. et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1336–1345 (2008). The first study to investigate the relationship between CT coronary artery calcium score and the incidence of coronary events in a multi-ethnic population.

    Article  CAS  PubMed  Google Scholar 

  36. Ardehali, R., Nasir, K., Kolandaivelu, A., Budoff, M. J. & Blumenthal, R. S. Screening patients for subclinical atherosclerosis with non-contrast cardiac CT. Atherosclerosis 192, 235–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Raggi, P. et al. Aggressive versus moderate lipid-lowering therapy in hypercholesterolemic postmenopausal women: Beyond Endorsed Lipid Lowering with EBT Scanning (BELLES). Circulation 112, 563–571 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Terry, J. G. et al. Effect of simvastatin (80 mg) on coronary and abdominal aortic arterial calcium (from the coronary artery calcification treatment with zocor [CATZ] study). Am. J. Cardiol. 99, 1714–1717 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Nicholls, S. J. et al. Coronary artery calcification and changes in atheroma burden in response to established medical therapies. J. Am. Coll. Cardiol. 49, 263–270 (2007).

    Article  PubMed  Google Scholar 

  40. Redberg, R. F. et al. 34th Bethesda Conference: Task force #3 — What is the spectrum of current and emerging techniques for the noninvasive measurement of atherosclerosis? J. Am. Coll. Cardiol. 41, 1886–1898 (2003).

    Article  PubMed  Google Scholar 

  41. Einstein, A. J., Henzlova, M. J. & Rajagopalan, S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298, 317–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Einstein, A. J., Moser, K. W., Thompson, R. C., Cerqueira, M. D. & Henzlova, M. J. Radiation dose to patients from cardiac diagnostic imaging. Circulation 116, 1290–1305 (2007). A detailed review of the radiation exposure risks associated with all forms of cardiac imaging.

    Article  PubMed  Google Scholar 

  43. Husmann, L. et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur. Heart J. 29, 191–197 (2008).

    Article  PubMed  Google Scholar 

  44. Nissen, S. E. Application of intravascular ultrasound to characterize coronary artery disease and assess the progression or regression of atherosclerosis. Am. J. Cardiol. 89, 24B–31B (2002).

    Article  PubMed  Google Scholar 

  45. Nissen, S. E. & Yock, P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103, 604–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Prati, F. et al. Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries. Heart 85, 567–570 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kawasaki, M. et al. In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation 105, 2487–2492 (2002).

    Article  PubMed  Google Scholar 

  48. Nissen, S. E. et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291, 1071–1080 (2004). A large IVUS trial demonstrating that high-dose statin therapy can impede progression of coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  49. Nissen, S. E. et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295, 1556–1565 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA 290, 2292–2300 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Nissen, S. E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Nissen, S. E. et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N. Engl. J. Med. 354, 1253–1263 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. von Birgelen, C. et al. Relationship between cardiovascular risk as predicted by established risk scores versus plaque progression as measured by serial intravascular ultrasound in left main coronary arteries. Circulation 110, 1579–1585 (2004).

    Article  PubMed  Google Scholar 

  54. Brown, B. G. A direct comparison of intravascular ultrasound and quantitative coronary arteriography: implications for measures of atherosclerosis as clinical surrogates. Circulation 115, 1824–1826 (2007).

    Article  PubMed  Google Scholar 

  55. Corti, R. et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years' follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 106, 2884–2887 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Corti, R. et al. Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: a prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J. Am. Coll. Cardiol. 46, 106–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Ayaori, M. et al. Effect of bezafibrate therapy on atherosclerotic aortic plaques detected by MRI in dyslipidemic patients with hypertriglyceridemia. Atherosclerosis 196, 425–433 (2006).

    Article  CAS  Google Scholar 

  58. Fayad, Z. A. & Fuster, V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ. Res. 89, 305–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Choudhury, R. P., Fuster, V., Badimon, J. J., Fisher, E. A. & Fayad, Z. A. MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler. Thromb. Vasc. Biol. 22, 1065–1074 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Saam, T. et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler. Thromb. Vasc. Biol. 25, 234–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Kampschulte, A. et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 110, 3239–3244 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Cai, J. et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 112, 3437–3444 (2005).

    Article  PubMed  Google Scholar 

  63. Marckmann, P. et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J. Am. Soc. Nephrol. 17, 2359–2362 (2006).

    Article  PubMed  Google Scholar 

  64. Zhao, X. Q. et al. Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler. Thromb. Vasc. Biol. 21, 1623–1629 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Underhill, H. R. et al. Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial. Am. Heart J. 155, 584.e1–584.e8 (2008).

    Article  CAS  Google Scholar 

  66. Kastelein, J. J. et al. Designs of RADIANCE 1 and 2: carotid ultrasound studies comparing the effects of torcetrapib/atorvastatin with atorvastatin alone on atherosclerosis. Curr. Med. Res. Opin. 23, 885–894 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Navab, M. et al. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation 109, 3215–3220 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Tardif, J. C. et al. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 110, 3372–3377 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Zhao, X. Q. et al. Testing the hypothesis of atherosclerotic plaque lipid depletion during lipid therapy by magnetic resonance imaging: study design of Carotid Plaque Composition Study. Am. Heart J. 154, 239–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Choudhury, R. P., Fuster, V. & Fayad, Z. A. Molecular, cellular and functional imaging of atherothrombosis. Nature Rev. Drug Discov. 3, 913–925 (2004).

    Article  CAS  Google Scholar 

  71. Jaffer, F. A., Libby, P. & Weissleder, R. Molecular imaging of cardiovascular disease. Circulation 116, 1052–1061 (2007).

    Article  PubMed  Google Scholar 

  72. Jaffer, F. A. et al. Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 22, 849–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Yabushita, H. et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 106, 1640–1645 (2002). The first study to assess the accuracy of OCT for diagnosing plaque type.

    Article  PubMed  Google Scholar 

  74. Tearney, G. J. et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107, 113–119 (2003).

    Article  PubMed  Google Scholar 

  75. Rogowska, J., Patel, N. A., Fujimoto, J. G. & Brezinski, M. E. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 90, 556–562 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, V. X. et al. Interstitial Doppler optical coherence tomography. Opt. Lett. 30, 1791–1793 (2005).

    Article  PubMed  Google Scholar 

  77. Giattina, S. D. et al. Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int. J. Cardiol. 107, 400–409 (2006).

    Article  PubMed  Google Scholar 

  78. Spence, J. D. Technology Insight: ultrasound measurement of carotid plaque — patient management, genetic research, and therapy evaluation. Nature Clin. Pract. Neurol. 2, 611–619 (2006).

    Article  Google Scholar 

  79. Barnett, P. A., Spence, J. D., Manuck, S. B. & Jennings, J. R. Psychological stress and the progression of carotid artery disease. J. Hypertens. 15, 49–55 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Spence, J. D. Ultrasound measurement of atherosclerosis. Stroke 35, e87–e88; author reply e87–e8 (2004).

    PubMed  Google Scholar 

  81. Ainsworth, C. D. et al. 3D ultrasound measurement of change in carotid plaque volume: a tool for rapid evaluation of new therapies. Stroke 36, 1904–1909 (2005).

    Article  PubMed  Google Scholar 

  82. Takayama, T. et al. Rationale and design for a study using intravascular ultrasound to evaluate effects of rosuvastatin on coronary artery atheroma in Japanese subjects: COSMOS study (Coronary Atherosclerosis Study Measuring Effects of Rosuvastatin Using Intravascular Ultrasound in Japanese Subjects). Circ. J. 71, 271–275 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Saam, T. et al. Sample size calculation for clinical trials using magnetic resonance imaging for the quantitative assessment of carotid atherosclerosis. J. Cardiovasc. Magn. Reson. 7, 799–808 (2005).

    Article  PubMed  Google Scholar 

  84. Corti, R. et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 104, 249–252 (2001). The first prospective study demonstrating the ability of non-invasive MRI to show changes in atherosclerotic plaque in response to statin therapy.

    Article  CAS  PubMed  Google Scholar 

  85. Lee, J. M. et al. Early changes in arterial structure and function following statin initiation: quantification by magnetic resonance imaging. Atherosclerosis 197, 951–958 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Revkin, J. H., Shear, C. L., Pouleur, H. G., Ryder, S. W. & Orloff, D. G. Biomarkers in the prevention and treatment of atherosclerosis: need, validation, and future. Pharmacol. Rev. 59, 40–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Moreno, P. R. et al. Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 94, 3090–3097 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Choudhury, R. P., Lee, J. M. & Greaves, D. R. Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nature Clin. Pract. Cardiovasc. Med. 2, 309–315 (2005).

    Article  CAS  Google Scholar 

  89. Cullen, J. P. et al. Resveratrol inhibits expression and binding activity of the monocyte chemotactic protein-1 receptor, CCR2, on THP-1 monocytes. Atherosclerosis 195, e125–e133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morris, J. B. et al. p38 MAPK inhibition reduces aortic ultrasmall superparamagnetic iron oxide uptake in a mouse model of atherosclerosis: MRI assessment. Arterioscler. Thromb. Vasc. Biol. 28, 265–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Tardif, J. C. et al. Effects of the antioxidant succinobucol (AGI-1067) on human atherosclerosis in a randomized clinical trial. Atherosclerosis 197, 480–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Doggrell, S. A. & Wanstall, J. C. Vascular chymase: pathophysiological role and therapeutic potential of inhibition. Cardiovasc. Res. 61, 653–662 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Rudd, J. H. et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105, 2708–2711 (2002). The first description of the use of FDG–PET to demonstrate atherosclerotic plaque inflammation.

    Article  CAS  PubMed  Google Scholar 

  94. Tawakol, A. et al. In vivo18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J. Am. Coll. Cardiol. 48, 1818–1824 (2006).

    Article  PubMed  Google Scholar 

  95. Tahara, N. et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 48, 1825–1831 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Rudd, J. H. et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J. Am. Coll. Cardiol. 50, 892–896 (2007).

    Article  PubMed  Google Scholar 

  97. Madjid, M., Zarrabi, A., Litovsky, S., Willerson, J. T. & Casscells, W. Finding vulnerable atherosclerotic plaques: is it worth the effort? Arterioscler. Thromb. Vasc. Biol. 24, 1775–1782 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Casscells, W., Naghavi, M. & Willerson, J. T. Vulnerable atherosclerotic plaque: a multifocal disease. Circulation 107, 2072–2075 (2003).

    Article  PubMed  Google Scholar 

  99. Breyholz, H. J. et al. C-5-disubstituted barbiturates as potential molecular probes for noninvasive matrix metalloproteinase imaging. J. Med. Chem. 48, 3400–3409 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Cohen, J. C., Boerwinkle, E., Mosley, T. H., Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Cauchon, N. et al. PET imaging of apoptosis with 64Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur. J. Nucl. Med. Mol. Imaging 34, 247–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Nutt, R., Vento, L. J. & Ridinger, M. H. In vivo molecular imaging biomarkers: clinical pharmacology's new “PET”? Clin. Pharmacol. Ther. 81, 792–795 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Ruehm, S. G., Corot, C., Vogt, P., Kolb, S. & Debatin, J. F. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Kooi, M. E. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107, 2453–2458 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Schmitz, S. A. et al. Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J. Magn. Reson. Imaging 14, 355–361 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Litovsky, S. et al. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-α, interleukin-1β, and interferon-γ. Circulation 107, 1545–1549 (2003).

    Article  PubMed  Google Scholar 

  107. Trivedi, R. A. et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler. Thromb. Vasc. Biol. 26, 1601–1606 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Amirbekian, V. et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc. Natl Acad. Sci. USA 104, 961–966 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frias, J. C., Williams, K. J., Fisher, E. A. & Fayad, Z. A. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J. Am. Chem. Soc. 126, 16316–16317 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Winter, P. M. et al. Endothelial αvβ3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 2103–2109 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. McAteer, M. A. et al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler. Thromb. Vasc. Biol. 28, 77–183 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Davies, M. J. et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J. Pathol. 171, 223–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. McAteer, M. A. et al. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nature Med. 13, 1253–1258 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Kaufmann, B. A. et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 116, 276–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. MacNeill, B. D. et al. Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease. J. Am. Coll. Cardiol. 44, 972–979 (2004).

    Article  PubMed  Google Scholar 

  116. Lee, J. M. & Choudhury, R. P. in Metabolic Syndrome and Cardiovascular Disease (eds Krentz, A.J. & Wong, N. D.) 79–108 (Taylor and Francis, New York, NY, 2006).

    Book  Google Scholar 

  117. Jaffer, F. A. et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 115, 2292–2298 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Schmermund, A. et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am. Heart J. 144, 212–218 (2002).

    Article  PubMed  Google Scholar 

  119. Joseph, S. B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl Acad. Sci. USA 99, 7604–7609 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Walcher, D. et al. LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes. Arterioscler. Thromb. Vasc. Biol. 26, 1022–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Li, A. C. et al. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J. Clin. Invest. 114, 1564–1576 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, X. et al. Differential effects of apolipoprotein A-I-mimetic peptide on evolving and established atherosclerosis in apolipoprotein E-null mice. Circulation 110, 1701–1705 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Piper, E., Price, G. & Chen, Y. TAK-475, a squalene synthase inhibitor, improves lipid profile in hyperlipidemic subjects. Circulation 114, II_288 (2006).

    Google Scholar 

  124. Gaofu, Q. et al. Vaccinating rabbits with a cholesteryl ester transfer protein (CETP) B-Cell epitope carried by heat shock protein-65 (HSP65) for inducing anti-CETP antibodies and reducing aortic lesions in vivo. J. Cardiovasc. Pharmacol. 45, 591–598 (2005).

    Article  PubMed  Google Scholar 

  125. Okamoto, H. et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406, 203–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Miller, L. W. et al. Inhibition of transplant vasculopathy in a rat aortic allograft model after infusion of anti-inflammatory viral serpin. Circulation 101, 1598–1605 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Auge, N. et al. Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 110, 571–578 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in this laboratory is funded by the Wellcome Trust and the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin P. Choudhury.

Ethics declarations

Competing interests

R.P.C. has received research funding from GlaxoSmithKline and Merck (Darmstadt) for work involving atherosclerosis imaging with MRI. He has received travel awards/honoraria/speaker fees from or served as a consultant or on advisory boards to Merck, Sanofi Aventis, AstraZeneca, GlaxoSmithKline, Schering–Plough, Solvay Healthcare and Pfizer. R.P.C.'s work is supported by the Oxford Biomedical Research Centre, NIHR funding scheme.

Related links

Related links

FURTHER INFORMATION

Atherosclerosis Risk in Communities (ARIC) MRI Study

European Medicines Agency Committee for Medicinal Products for Human Use

US FDA Medical Imaging and Drug Development

Glossary

B-mode (2-dimensional) ultrasound

A linear array of ultrasound transducers used to scan planes of the body to obtain a two-dimensional image.

Acoustic shadow

An area through which ultrasound waves fail to propagate, most often due to obstruction by calcification, leading to loss of signal.

Echogenicity

The ability to create a signal detectable by ultrasound.

Integrated backscatter

A measure of the mean reflected ultrasonic energy from a particular region of tissue.

Balloon angioplasty

A percutaneous procedure whereby a small balloon is inflated inside a tightly narrowed artery in order to relieve the obstruction.

Stent

A rigid wire mesh inserted into a narrowed artery and expanded by balloon angioplasty to hold the artery open.

Elastography

A method of assessing the integrity of a tissue by measuring its biomechanical properties, such as its stiffness or its response to strain.

OCT Doppler

The use of optical coherence tomography (OCT) to estimate blood flow using the Doppler effect.

Polarization-sensitive OCT

The use of optical coherence tomography (OCT) to measure tissue birefringence and estimate plaque collagen content.

Carotid endarterectomy

A surgical procedure involving the removal of the core of plaques in the severely diseased or symptomatic artery in the neck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsay, A., Choudhury, R. Form to function: current and future roles for atherosclerosis imaging in drug development. Nat Rev Drug Discov 7, 517–529 (2008). https://doi.org/10.1038/nrd2588

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing