Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Remote ischaemic conditioning—therapeutic opportunities in renal medicine

Abstract

Following ischaemic insult, tissue damage is extended after reperfusion, known as an ischaemia reperfusion injury. Ischaemic conditioning—the application of transient, non-lethal, episodes of ischaemia—reduces the effect of a larger ischaemic insult, and limits the reperfusion injury. How this phenomenon might be exploited as a therapeutic treatment is now the subject of a number of clinical trials. From initial trials focusing on the mitigation of cardiac injury, interest has expanded to examine the potential for its use as an adjunctive therapy in different clinical scenarios, including renal medicine. In this Review, we discuss different forms of conditioning, potential molecular mechanisms underpinning its effect, and potential applications in the setting of acute kidney injury, chronic kidney disease and end-stage renal disease.

Key Points

  • An organ or tissue can be protected from ischaemic reperfusion injury by application of remote ischaemic preconditioning

  • Much work has focused on determining the underlying mechanisms that drive this protective effect

  • Preclinical studies suggest a potential therapeutic role for ischaemic conditioning in renal protection

  • Preconditioning might also be a therapy for improving cardiovascular outcomes in patients with chronic kidney disease

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular mechanisms underpinning remote ischaemic preconditioning.
Figure 2: Trial design to test the effect of RIPC in patients receiving haemodialysis.

Similar content being viewed by others

References

  1. Carden, D. L. & Granger D. N. Pathophysiology of ischaemia-reperfusion injury. J. Pathol. 190, 255–266 (2000)

    Article  CAS  Google Scholar 

  2. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia—a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).

    Article  CAS  Google Scholar 

  3. Hausenloy, D. J. & Yellon, D. M. Preconditioning and postconditioning: underlying mechanisms and clinical application. Atherosclerosis 204, 334–341 (2009).

    Article  CAS  Google Scholar 

  4. Marber, M. S., Latchman, D. S., Walker, J. M., & Yellon, D. M. Cardiac stress protein elevation 24 hours after brief ischemia or heat-stress is associated with resistance to myocardial-infarction. Circulation 88, 1264–1272 (1993).

    Article  CAS  Google Scholar 

  5. Wang, N. P., Wang, Z. F., Philip, T. & Zhao, Z. Q. Sr. Inhibition of adverse myocardial remodeling and improvement of cardiac function with postconditioning: comparison with preconditioning [abstract]. Circulation 124, A9579 (2011).

    Google Scholar 

  6. Gho, B. C. G., Schoemaker, R. G., van den Doel, M. A., Duncker, D. J. & Verdouw, P. D. Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94, 2193–2200 (1996).

    Article  CAS  Google Scholar 

  7. Birnbaum, Y., Hale, S. L. & Kloner, R. A. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with pacing of the gastrocnemius muscle in the rabbit. Circulation 96, 1641–1646 (1997).

    Article  CAS  Google Scholar 

  8. Loukogeorgakis, S. P. et al. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J. Am. Coll. Cardiol. 46, 450–456 (2005).

    Article  CAS  Google Scholar 

  9. Schmidt, M. R. et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a K-ATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am. J. Physiol. Heart. Circ. Physiol. 292, H1883–H1890 (2007).

    Article  CAS  Google Scholar 

  10. Botker, H. E. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375, 727–734 (2010).

    Article  Google Scholar 

  11. Rentoukas, I. et al. Cardioprotective role of remote ischemic periconditioning in primary percutaneous coronary intervention enhancement by opioid action. JACC Cardiovasc. Interv. 3, 49–55 (2010).

    Article  Google Scholar 

  12. Garlid, K. D., Costa, A. D. T., Quinlan, C. L., Pierre, S. V. & Dos Santos, P. Cardioprotective signaling to mitochondria. J. Mol. Cell. Cardiol. 46, 858–866 (2009).

    Article  CAS  Google Scholar 

  13. Shi, W. W. & Vinten-Johansen, J. Endogenous cardioprotection by ischaemic postconditioning and remote conditioning. Cardiovasc. Res. 94, 206–216 (2012).

    Article  CAS  Google Scholar 

  14. Heusch, G. et al. STAT5 activation and cardioprotection by remote ischemic preconditioning in humans. Circ. Res. 110, 111–115 (2012).

    Article  CAS  Google Scholar 

  15. Shimizu, M. et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin. Sci. (Lond.) 117, 191–200 (2009).

    Article  CAS  Google Scholar 

  16. Baxter, G. F. Role of adenosine in delayed preconditioning of myocardium. Cardiovasc. Res. 55, 483–494 (2002).

    Article  CAS  Google Scholar 

  17. Park, K. M. et al. Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J. Biol. Chem. 278, 27256–27266 (2003).

    Article  CAS  Google Scholar 

  18. Ding, Y. K., Zhang, M. M. & He, R. R. Role of renal nerve in cardioprotection provided by renal ischaemic preconditioning in anaesthetized rabbits. Sheng Li Xue Bao. 53, 7–12 (2001).

    CAS  PubMed  Google Scholar 

  19. Oosterlinck, W. et al. Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J. Thorac. Cardiovasc. Surg. 145, 1595–1602 (2013).

    Article  Google Scholar 

  20. Engbersen, R. et al. Improved resistance to ischemia and reperfusion, but impaired protection by ischemic preconditioning in patients with type 1 diabetes mellitus: a pilot study. Cardiovasc. Diabetol. 11, 124 (2012).

    Article  CAS  Google Scholar 

  21. Konstantinov, I. E. et al. Remote ischemic preconditioning of the recipient reduces myocardial ischemia-reperfusion injury of the denervated donor heart via a KATP channel-dependent mechanism. Transplantation 79, 1691–1695 (2005).

    Article  Google Scholar 

  22. Lim, S. Y., Yellon, D. M. & Hausenloy, D. J. The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res. Cardiol. 105, 651–655 (2010).

    Article  Google Scholar 

  23. Hausenloy, D. J. & Yellon, D. M. Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail. Rev. 12, 217–234 (2007).

    Article  CAS  Google Scholar 

  24. Jenkins, D. P. et al. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery. Heart 77, 314–318 (1997).

    Article  CAS  Google Scholar 

  25. Hoole, S. P. et al. Cardiac remote ischemic preconditioning in coronary stenting (CRISP Stent) study a prospective, randomized control trial. Circulation 119, 820–827 (2009).

    Article  Google Scholar 

  26. Luo, W. J., Li, B., Lin, G. Q. & Huang, R. M. Postconditioning in cardiac surgery for tetralogy of Fallot. J. Thorac. Cardiovasc. Surg. 133, 1373–1374 (2007).

    Article  Google Scholar 

  27. Luo, W. J., Li, B., Chen, R., Huang, R. M. & Lin, G. Q. Effect of ischemic postconditioning in adult valve replacement. Eur. J. Cardiothorac. Surg. 33, 203–208 (2008).

    Article  Google Scholar 

  28. Luo, W. J., Li, B., Lin, G. Q., Chen, R. & Huang, R. M. Does cardioplegia leave room for postconditioning in paediatric cardiac surgery? Cardiol. Young 18, 282–287 (2008).

    Article  Google Scholar 

  29. Lonborg, J. et al. Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ. Cardiovasc. Interv. 3, 34–41 (2010).

    Article  Google Scholar 

  30. Zhao, C. M. et al. Effect of ischaemic postconditioning on recovery of left ventricular contractile function after acute myocardial infarction. J. Int. Med. Res. 40, 1082–1088 (2012).

    Article  CAS  Google Scholar 

  31. Prasad, A. et al. Remote ischemic preconditioning immediately before percutaneous coronary intervention does not impact myocardial necrosis, inflammatory response, and circulating endothelial progenitor cell counts: a single center randomized sham controlled trial. Catheter Cardiovasc. Interv. 81, 930–936 (2013).

    Article  Google Scholar 

  32. Lomivorotov, V. V. et al. Remote ischaemic preconditioning does not protect the heart in patients undergoing coronary artery bypass grafting. Interact. Cardiovasc. Thorac. Surg. 15, 18–22 (2012).

    Article  Google Scholar 

  33. Jensen, H. A. et al. Remote ischemic preconditioning protects the brain against injury after hypothermic circulatory arrest. Circulation 123, 714–721 (2011).

    Article  CAS  Google Scholar 

  34. Walsh, S. R. et al. Remote ischemic preconditioning for cerebral and cardiac protection during carotid endarterectomy: results from a pilot randomized clinical trial. Vasc. Endovascular Surg. 44, 434–439 (2010).

    Article  Google Scholar 

  35. Harder, Y. et al. An old dream revitalised: preconditioning strategies to protect surgical flaps from critical ischaemia and ischaemia-reperfusion injury. J. Plast. Reconstr. Aesthet. Surg. 61, 503–511 (2008).

    Article  CAS  Google Scholar 

  36. Wang, W. Z., Baynosa, R. C. & Zamboni, W. A. Update on ischemia-reperfusion injury for the plastic surgeon: 2011. Plast. Reconstr. Surg. 128, 685e–692e (2011).

    Article  Google Scholar 

  37. Kraemer, R. et al. Acute effects of remote ischemic preconditioning on cutaneous microcirculation—a controlled prospective cohort study. BMC Surg. 11, 32 (2011).

    Article  Google Scholar 

  38. Kanoria, S. et al. Remote preconditioning improves hepatic oxygenation after ischaemia reperfusion injury. Transpl. Int. 25, 783–791 (2012).

    Article  CAS  Google Scholar 

  39. Abu-Amara, M. et al. The hepatic soluble guanylyl cyclase-cyclic guanosine monophosphate pathway mediates the protection of remote ischemic preconditioning on the microcirculation in liver ischemia-reperfusion injury. Transplantation 93, 880–886 (2012).

    Article  CAS  Google Scholar 

  40. Bobryshev, P., Bagaeva, T. & Filaretova, L. Ischemic preconditioning attenuates gastric ischemia-reperfusion injury through involvement of glucocorticoids. J. Physiol. Pharmacol. 60, 155–160 (2009).

    PubMed  Google Scholar 

  41. Wever, K. E. et al. Ischemic preconditioning in the animal kidney, a systematic review and meta-analysis. PLoS ONE 7, e32296 (2012).

    Article  CAS  Google Scholar 

  42. Ishihara, M. et al. Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J. Am. Coll. Cardiol. 38, 1007–1011 (2001).

    Article  CAS  Google Scholar 

  43. van den Munckhof, I. et al. Aging attenuates the protective effect of ischemic preconditioning against endothelial ischemia-reperfusion injury in humans. Am. J. Physiol. Heart. Circ. Physiol. 304, H1727–H1732 (2013).

    Article  CAS  Google Scholar 

  44. Vinten-Johansen, J. & Shi, W. W. Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. J. Cardiovasc. Pharmacol. Ther. 16, 260–266 (2011).

    Article  Google Scholar 

  45. Byrne, C. J. et al. Ischemic conditioning protects the uremic heart in a rodent model of myocardial infarction. Circulation 125, 1256–1265 (2012).

    Article  Google Scholar 

  46. Kocsis, G. F. et al. Preconditioning protects the heart in a prolonged uremic condition. Am. J. Physiol. Heart Circ. Physiol. 303, H1229–H1236 (2012).

    Article  CAS  Google Scholar 

  47. Zimmerman, R. F. et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney Int. 80, 861–867 (2011).

    Article  Google Scholar 

  48. Li, L., Li, G. L., Yu, C. & Li, Y. The role of remote ischemic preconditioning on postoperative kidney injury in patients undergoing cardiac and vascular interventions: a meta-analyses. J. Cardiothorac. Surg. 8, 43 (2013).

    Article  Google Scholar 

  49. Huang, Z. Y. et al. Synergy of isoflurane preconditioning and propofol postconditioning reduces myocardial reperfusion injury in patients. Clin. Sci. (Lond.) 121, 57–69 (2011).

    Article  CAS  Google Scholar 

  50. Er, F. et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy randomized pilot RenPro trial (Renal Protection Trial). Circulation 126, 296–303 (2012).

    Article  CAS  Google Scholar 

  51. Jardine, A. G., Gaston, R. S., Fellstrom, B. C. & Holdaas, H. Prevention of cardiovascular disease in adult recipients of kidney transplants. Lancet 378, 1419–1427 (2011).

    Article  Google Scholar 

  52. Baigent, C., Burbury, K. & Wheeler, D. Premature cardiovascular disease in chronic renal failure. Lancet 356, 147–152 (2000)

    Article  CAS  Google Scholar 

  53. McIntyre, C. W. Effects of hemodialysis on cardiac function. Kidney Int. 76, 371–375 (2009).

    Article  Google Scholar 

  54. Hajhosseiny, R., Khavandi, K. & Goldsmith, D. J. Cardiovascular disease in chronic kidney disease: untying the Gordian knot. Int. J. Clin. Pract. 67, 14–31 (2013).

    Article  CAS  Google Scholar 

  55. McIntyre, C. W. Haemodialysis-induced myocardial stunning in chronic kidney disease—a new aspect of cardiovascular disease. Blood Purif. 29, 105–110 (2010).

    Article  Google Scholar 

  56. Burton, J. O., Jefferies, H. J., Selby, N. M. & McIntyre, C. W. Hemodialysis-induced repetitive myocardial injury results in global and segmental reduction in systolic cardiac function. Clin. J. Am. Soc. Nephrol. 4, 1925–1931 (2009).

    Article  Google Scholar 

  57. Burton, J. O., Jefferies, H. J., Selby, N. M. & McIntyre, C. W. Hemodialysis-induced cardiac injury: determinants and associated outcomes. Clin. J. Am. Soc. Nephrol. 4, 914–920 (2009).

    Article  Google Scholar 

  58. McIntyre, C. W. Recurrent circulatory stress: the dark side of dialysis. Sem. Dial. 23, 449–451 (2010).

    Article  Google Scholar 

  59. Kotanko, P., Carter, M. & Levin, N. W. Intestinal bacterial microflora—a potential source of chronic inflammation in patients with chronic kidney disease. Nephrol. Dial. Transplant. 21, 2057–2060 (2006).

    Article  Google Scholar 

  60. Harrison, L. E. A., Burton, J. O., Szeto, C. C., Li, P. K. T. & McIntyre, C. W. Endotoxaemia in haemodialysis: a novel factor in erythropoetin resistance? PLoS ONE 7, e40209 (2012).

    Article  CAS  Google Scholar 

  61. Charalambous, B. M., Stephens, R. C. M., Feavers, I. M. & Montgomery, H. E. Role of bacterial endotoxin in chronic heart failure: the gut of the matter. Shock 28, 15–23 (2007).

    Article  CAS  Google Scholar 

  62. McIntyre, C. W. et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 133–141 (2011).

    Article  CAS  Google Scholar 

  63. Agganis, B. T. et al. Depression and cognitive function in maintenance hemodialysis patients. Am. J. Kidney Dis. 56, 704–712 (2010).

    Article  Google Scholar 

  64. Eldehni, M. T. & McIntyre, C. W. Are there neurological consequences of recurrent intradialytic hypotension? Sem. Dial. 25, 253–256 (2012).

    Article  Google Scholar 

  65. Selby, N. M., Burton, J. O., Chesterton, L. F. & McIntyre, C. W. Dialysis-induced regional left ventricular dysfunction is ameliorated by cooling the dialysate. Clin. J. Am. Soc. Nephrol. 1, 1216–1225 (2006).

    Article  Google Scholar 

  66. Selby, N. M., Lambie, S. H., Camici, P. G., Baker, C. S. & McIntyre, C. W. Occurrence of regional left ventricular dysfunction in patients undergoing standard and biofeedback dialysis. Am. J. Kidney Dis. 47, 830–841 (2006).

    Article  Google Scholar 

  67. Jefferies, H. J., Virk, B., Schiller, B., Moran, J. & McIntyre, C. W. Frequent hemodialysis schedules are associated with reduced levels of dialysis-induced cardiac injury (myocardial stunning). Clin. J. Am. Soc. Nephrol. 6, 1326–1332 (2011).

    Article  Google Scholar 

  68. Go, A. S., Chertow, G. M., Fan, D. J., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  Google Scholar 

  69. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32, S112–S119 (1998).

    Article  CAS  Google Scholar 

  70. Genovesi, S. et al. Sudden death and associated factors in a historical cohort of chronic haemodialysis patients. Nephrol. Dial. Transplant. 24, 2529–2536 (2009).

    Article  Google Scholar 

  71. Kahn, M. R., Robbins, M. J., Kim, M. C. & Fuster, V. Management of cardiovascular disease in patients with kidney disease. Nat. Rev. Cardiol. 10, 261–273 (2013).

    Article  CAS  Google Scholar 

  72. Odudu, A., Eldehni, M. T., Fakis, A. & McIntyre, C. W. Rationale and design of a multi-centre randomised controlled trial of individualised cooled dialysate to prevent left ventricular systolic dysfunction in haemodialysis patients. BMC Nephrol. 13, 45 (2012).

    Article  Google Scholar 

  73. Selby, N. M., Taal, M. W. & McIntyre, C. W. Comparison of progressive conductivity reduction with diacontrol and standard dialysis. ASAIO J. 53, 194–200 (2007).

    Article  Google Scholar 

  74. Controlled Trials. Randomised controlled trial of remote ischaemic pre-conditioning to reduce dialysis induced myocardial stunning in haemodialysis patients [online], (2011).

  75. Moro, L., Pedone, C., Mondi, A., Nunziata, E. & Incalzi, R. A. Effect of local and remote ischemic preconditioning on endothelial function in young people and healthy or hypertensive elderly people. Atherosclerosis 219, 750–752 (2011).

    Article  CAS  Google Scholar 

  76. Dubin, R. F. et al. Association of segmental wall motion abnormalities occurring during hemodialysis with post-dialysis fatigue. Nephrol. Dial. Transplant. 28, 2580–2585 (2013).

    Article  Google Scholar 

  77. Cheung, M. M. H. et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery–first clinical application in humans. J. Am. Coll. Cardiol. 47, 2277–2282 (2006).

    Article  Google Scholar 

  78. Choi, Y. S. et al. Effect of remote ischemic preconditioning on renal dysfunction after complex valvular heart surgery: a randomized controlled trial. J. Thorac. Cardiovasc. Surg. 142, 148–154 (2011).

    Article  Google Scholar 

  79. Ren, C. et al. Delayed postconditioning protects against focal ischemic brain injury in rats. PLoS ONE 3, e3851 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

L. E. Crowley is grateful for the support of Heart Research UK in completing her research.

Author information

Authors and Affiliations

Authors

Contributions

L. E. Crowley researched the data and wrote the article. C. W. McIntyre made substantial contribution to discussion of the content, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Christopher W. McIntyre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowley, L., McIntyre, C. Remote ischaemic conditioning—therapeutic opportunities in renal medicine. Nat Rev Nephrol 9, 739–746 (2013). https://doi.org/10.1038/nrneph.2013.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing