Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells

Abstract

Bone marrow contains many cell types, including stroma, vascular cells, adipocytes, osteoblasts and osteoclasts, as well as mesenchymal stem cells and hematopoietic stem cells. It was previously thought that cells within bone marrow solely functioned to regenerate cells within the marrow, as well as all circulating hematopoietic cells in peripheral blood. Recent reports, however, suggest that marrow-derived cells can also regenerate other cell types, including cardiac muscle, liver cell types, neuronal and non-neuronal cell types of the brain, as well as endothelial cells and osteoblasts. These multiple cell types could have originated from either of the stem cell populations within bone marrow or potentially other precursors. Therefore, it is not entirely clear whether each of these distinct cell lineages has a true progenitor within marrow or whether the marrow contains a multipotent population of cells that has been set aside during embryogenesis for postnatal repair and remodeling of a variety of tissues. It is clear, however, that directing the fate of bone marrow-derived progenitors (ie toward hematopoietic, vascular or cardiac cell fates) can only be accomplished if the phenotype of the stem cells is defined, and their homing and differentiation programs are elucidated. Much work is focused on these issues, wherein lie the key to harnessing the potential of adult stem cells for autologous cell and gene therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ferrari G et al. Muscle regeneration by bone marrow-derived myogenic progenitors Science 1998 279: 1528–1530

    Article  CAS  Google Scholar 

  2. Bittner RE et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice Anat Embryol (Berl) 1999 199: 391–396

    Article  CAS  Google Scholar 

  3. Shi Q et al. Evidence for circulating bone marrow-derived endothelial cells Blood 1998 92: 362–367

    CAS  Google Scholar 

  4. Horwitz EM et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta Nat Med 1999 5: 309–313

    Article  CAS  Google Scholar 

  5. Petersen BE et al. Bone marrow as a potential source of hepatic oval cells Science 1999 284: 1168–1170

    Article  CAS  Google Scholar 

  6. Theise ND et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation Hepatology 2000 31: 235–240

    Article  CAS  Google Scholar 

  7. Theise ND et al. Liver from bone marrow in humans Hepatology 2000 32: 11–16

    Article  CAS  Google Scholar 

  8. Brazelton TR, Rossi FM, Keshet GI, Blau HM . From marrow to brain: expression of neuronal phenotypes in adult mice Science 2000 290: 1775–1779

    Article  CAS  Google Scholar 

  9. Mezey E et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow Science 2000 290: 1779–1782

    Article  CAS  Google Scholar 

  10. Eglitis MA, Mezey E . Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice Proc Natl Acad Sci USA 1997 94: 4080–4085

    Article  CAS  Google Scholar 

  11. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells (published erratum appears in Science 1989; 244: 1030) Science 1988 241: 58–62

    Article  CAS  Google Scholar 

  12. Ogawa M et al. Expression and function of c-kit in hemopoietic progenitor cells J Exp Med 1991 174: 63–71

    Article  CAS  Google Scholar 

  13. Uchida N, Weissman IL . Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow J Exp Med 1992 175: 175–184

    Article  CAS  Google Scholar 

  14. Goodell MA et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo J Exp Med 1996 183: 1797–1806

    Article  CAS  Google Scholar 

  15. Berenson RJ . Transplantation of CD34+ hematopoietic precursors: clinical rationale Transplant Proc 1992 24: 3032–3034

    CAS  PubMed  Google Scholar 

  16. Baum CM et al. Isolation of a candidate human hematopoietic stem-cell population Proc Natl Acad Sci USA 1992 89: 2804–2808

    Article  CAS  Google Scholar 

  17. Goodell MA et al. Dye efflux studies suggest the existence of CD34-negative/low hemaptopoietic stem cells in multiple species Nat Med 1997 3: 1337–1345

    Article  CAS  Google Scholar 

  18. Bhatia M et al. A newly discovered class of human hematopoietic cells with SCID- repopulating activity Nat Med 1998 4: 1038–1045

    Article  CAS  Google Scholar 

  19. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases Nature 2000 407: 249–257

    Article  CAS  Google Scholar 

  20. Risau W . Differention of endothelium FASEB J 1995 9: 926–933

    Article  CAS  Google Scholar 

  21. Murohara T et al. Tranplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization J Clin Invest 2000 105: 1527–1536

    Article  CAS  Google Scholar 

  22. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP . Origins of circulating endothelial cells and endothelial outgrowth from blood J Clin Invest 2000 105: 71–77

    Article  CAS  Google Scholar 

  23. Jackson KA et al. Regeneration of cardiac muscle and vascular endothelium by adult stem cells J Clin Invest 2001 107: 1395–1402

    Article  CAS  Google Scholar 

  24. Kocher AA et al. Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function Nat Med 2001 7: 430–436

    Article  CAS  Google Scholar 

  25. Springer ML et al. VEGF gene delivery to muscle: potential role for vasculogenesis in adults Cell 1998 2: 549–558

    CAS  Google Scholar 

  26. Asahara T et al. Isolation of putative progenitor endothelial cells for angiogenesis Science 1997 275: 964–967

    Article  CAS  Google Scholar 

  27. Crosby JR et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation Circ Res 2000 87: 728–730

    Article  CAS  Google Scholar 

  28. Schatteman GC et al. Blood-derived angioblasts accelerate blood flow restoration in diabetic mice J Clin Invest 2000 106: 571–578

    Article  CAS  Google Scholar 

  29. Keller G . The hemangioblast Marshak DR, Gardner RL, Gottlieb D (eds); Stem Cell Biology Cold Spring Harbor Laboratory Press 2001 pp 329–341

  30. Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell Science 1996 273: 242–245

    Article  CAS  Google Scholar 

  31. Jordan CT, Lemischka IR . Clonal and systemic analysis of long-term hematopoiesis in the mouse Genes Dev 1990 4: 220–232

    Article  CAS  Google Scholar 

  32. Lemischka IR, Raulet DH, Mulligan RC . Developmental potential and dynamic behavior of hematopoietic stem cells Cell 1986 45: 917–927

    Article  CAS  Google Scholar 

  33. Drake CJ, Fleming PA . Vasculogenesis in the day 6.5 to 9.5 mouse embryo Blood 2000 95: 1671–1679

    CAS  Google Scholar 

  34. Yamashita J et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors Nature 2000 408: 92–96

    Article  CAS  Google Scholar 

  35. Kallianpur AR, Jordan JE, Brandt SJ . The SCL/Tal-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis Blood 1994 83: 1200–1208

    CAS  PubMed  Google Scholar 

  36. McClanahan T, Dalrymple S, Barkett M, Lee F . Hematopoietic growth factor receptor gene as markers of lineage commitment during in vitro development of hematopoietic cells Blood 1993 81: 2903–2915

    CAS  PubMed  Google Scholar 

  37. Hirschi KK, Rohovsky SA, D'Amore PA . PDGF, TGF-ß and heterotypic cell-cell interactions mediate the recruitment and differentiation of 10T1/2 cells to a smooth muscle cell fate J Cell Biol 1998 141: 805–814

    Article  CAS  Google Scholar 

  38. Hirschi KK et al. Endothelial cells modulate the proliferation of mural cell precursors via PDGF-BB and heterotypic cell contact Circ Res 1999 84: 298–305

    Article  CAS  Google Scholar 

  39. Lindahl P, Hellstrom M, Kalen M, Betsholtz C . Endothelial-pervascular cell signaling in vascular development: lessons from knockout mice Curr Opin Lipid 1998 9: 407–411

    Article  CAS  Google Scholar 

  40. Shimizu K et al. Host bone marrow cells are a source of donor intimal smooth muscle-like cells in murine aortic transplant arteriopathy Nat Med 2001 7: 738–741

    Article  CAS  Google Scholar 

  41. Beltrami AP et al. Evidence that human cardiac myocytes divide after myocardial infarction N Engl J Med 2001 344: 1750–1757

    Article  CAS  Google Scholar 

  42. Soonpaa MH, Koh GY, Klug MG, Field LJ . Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium Science 1994 264: 98–101

    Article  CAS  Google Scholar 

  43. Koh GY et al. Stable fetal cardiomyocyte grafts in the hearts of dystropic mice and dogs J Clin Invest 1995 96: 2034–2042

    Article  CAS  Google Scholar 

  44. Zhang M et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies J Mol Cell Cardiol 2001 33: 907–921

    Article  CAS  Google Scholar 

  45. Reinecke H, MacDonald GH, Hauschka SD, Murry CE . Electromechanical coupling between skeletal and cardiac muscle: implications for infarct repair J Cell Biol 2000 149: 731–740

    Article  CAS  Google Scholar 

  46. Klug MG, Soonpaa MH, Koh GY, Field LJ . Genetically selected cardiomyocytes from differentiation embryonic stem cells form stable intracardiac grafts J Clin Invest 1996 98: 216–224

    Article  CAS  Google Scholar 

  47. Orlic D et al. Bone marrow cells regenerate infarcted myocardium Nature 2001 410: 701–705

    Article  CAS  Google Scholar 

  48. Orlic D et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival Proc Natl Acad Sci USA 2001 98: 10344–10349

    Article  CAS  Google Scholar 

  49. Thomson JA et al. Embryonic stem cell lines derived from human blastocysts Science 1998 282: 1145–1147

    Article  CAS  Google Scholar 

  50. Kehat I et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes J Clin Invest 2001 108: 407–414

    Article  CAS  Google Scholar 

  51. Pittenger MF et al. Multilineage potential of adult human mesenchymal stem cells Science 1999 284: 143–147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MAG is a Scholar of the Leukemia and Lymphoma Society. We thank members of the Hirschi and Goodell laboratories for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschi, K., Goodell, M. Hematopoietic, vascular and cardiac fates of bone marrow-derived stem cells. Gene Ther 9, 648–652 (2002). https://doi.org/10.1038/sj.gt.3301722

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301722

Keywords

This article is cited by

Search

Quick links