Semin Vasc Med 2004; 4(1): 31-41
DOI: 10.1055/s-2004-822984
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Clinical, Diagnostic, and Therapeutic Aspects of Familial Hypercholesterolemia

Emily S. van Aalst-Cohen1 , Angelique C.M Jansen1 , Saskia de Jongh1 , Pernette R.W de Sauvage Nolting1 , John J.P Kastelein1
  • 1Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
Further Information

Publication History

Publication Date:
22 March 2004 (online)

Heterozygous familial hypercholesterolemia (FH) is a common inherited disorder of lipoprotein metabolism. FH is characterized by elevated levels of low-density lipoprotein cholesterol, the presence of tendon xanthomas, and premature cardiovascular disease. The underlying molecular defect of FH consists of mutations in the gene coding for the low-density-lipoprotein-receptor protein, detection of which provides the only unequivocal diagnosis. Although the cause of FH is monogenic, there is wide variation in the onset and severity of atherosclerotic disease in these patients. Additional atherogenic risk factors of environmental, metabolic, and genetic origin are presumed to influence the clinical phenotype in FH. Criteria used to identify individuals with FH include a combination of clinical characteristics, personal and family history of early coronary artery disease, and biochemical parameters. Since the introduction in 1989 of statins, which have been shown to be effective and to delay or prevent the onset of cardiovascular disease, drug treatment of FH has greatly improved. New lipid-lowering agents are presently being developed for clinical use. This review provides an update on the clinical, diagnostic, and therapeutic aspects of heterozygous familial hypercholesterolemia.

REFERENCES

  • 1 Goldstein J L, Hobbs H H, Brown M S. Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D The metabolic basis of inherited disease. New York; McGraw-Hill 2001: 2863-2913
  • 2 Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S).  Lancet. 1994;  19;344 1383-1389
  • 3 Brown M S, Goldstein J L. Receptor-mediated control of cholesterol metabolism.  Science. 1976;  191 150-154
  • 4 Heath K E, Gahan M, Whittall R A, Humphries S E. Low-density lipoprotein receptor gene (LDLR) World-Wide Website in familial hypercholesterolaemia: update, new features and mutation analysis.  Atherosclerosis. 2001;  154 243-246
  • 5 Villeger L, Abifadel M, Allard D et al.. The UMD-LDLR database: additions to the software and 490 new entries to the database.  Hum Mutat. 2002;  20 81-87
  • 6 LDL-receptor mutation catalogue .Available at: http://www.ucl.ac.uk/fh
  • 7 Garcia C K, Wilund K, Arca M et al.. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein.  Science. 2001;  292 1394-1398
  • 8 Tybjaerg-Hansen A. Familial defective apolipoprotein B100. In: Betteridge DJ, Illingworth DR, Sheperd J Lipoproteins in Health and Disease. New York; Oxford University Press 1999: 709-719
  • 9 Haddad L, Day I N, Hunt S et al.. Evidence for a third genetic locus causing familial hypercholesterolemia. A non-LDLR, non-APOB kindred.  J Lipid Res. 1999;  40 1113-1122
  • 10 Varret M, Rabes J P, Saint-Jore B et al.. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32.  Am J Hum Genet. 1999;  64 1378-1387
  • 11 Hunt S C, Hopkins P N, Bulka K et al.. Genetic localization to chromosome 1p32 of the third locus for familial hypercholesterolemia in a Utah kindred.  Arterioscler Thromb Vasc Biol. 2000;  20 1089-1093
  • 12 Jansen A C, van Wissen S, Defesche J C, Kastelein J J. Phenotypic variability in familial hypercholesterolaemia: an update.  Curr Opin Lipidol. 2002;  13 165-171
  • 13 Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Scientific Steering Committee on behalf of the Simon Broome Register Group.  Atherosclerosis. 1999;  142 105-112
  • 14 Sijbrands E J, Westendorp R G, Paola L M et al.. Additional risk factors influence excess mortality in heterozygous familial hypercholesterolaemia.  Atherosclerosis. 2000;  149 421-425
  • 15 Hill J S, Hayden M R, Frohlich J, Pritchard P H. Genetic and environmental factors affecting the incidence of coronary artery disease in heterozygous familial hypercholesterolemia.  Arterioscler Thromb. 1991;  11 290-297
  • 16 Hopkins P N, Stephenson S, Wu L L et al.. Evaluation of coronary risk factors in patients with heterozygous familial hypercholesterolemia.  Am J Cardiol. 2001;  87 547-553
  • 17 Beaumont V, Jacotot B, Beaumont J L. Ischaemic disease in men and women with familial hypercholesterolaemia and xanthomatosis. A comparative study of genetic and environmental factors in 274 heterozygous cases.  Atherosclerosis. 1976;  24 441-450
  • 18 Vuorio A F, Turtola H, Piilahti K M et al.. Familial hypercholesterolemia in the Finnish north Karelia. A molecular, clinical, and genealogical study.  Arterioscler Thromb Vasc Biol. 1997;  17 3127-3138
  • 19 Sauvage Nolting P R, Defesche J C, Buirma R J, Hutten B A, Lansberg P J, Kastelein J J. Prevalence and significance of cardiovascular risk factors in a large cohort of patients with familial hypercholesterolemia.  J Intern Med. 2003;  253 161-168
  • 20 Yanagi K, Yamashita S, Kihara S et al.. Characteristics of coronary artery disease and lipoprotein abnormalities in patients with heterozygous familial hypercholesterolemia associated with diabetes mellitus or impaired glucose tolerance.  Atherosclerosis. 1997;  132 43-51
  • 21 Bertolini S, Cantafora A, Averna M et al.. Clinical expression of familial hypercholesterolemia in clusters of mutations of the LDL receptor gene that cause a receptor-defective or receptor-negative phenotype.  Arterioscler Thromb Vasc Biol. 2000;  20 E41-E52
  • 22 Ose L. An update on familial hypercholesterolaemia.  Ann Med. 1999;  31(Suppl 1) 13-18
  • 23 Heiberg A, Slack J. Family similarities in the age at coronary death in familial hypercholesterolaemia.  Br Med J. 1977;  20;2 493-495
  • 24 Ferrieres J, Lambert J, Lussier-Cacan S, Davignon J. Coronary artery disease in heterozygous familial hypercholesterolemia patients with the same LDL receptor gene mutation.  Circulation. 1995;  92 290-295
  • 25 Danesh J, Collins R, Peto R. Lipoprotein(a) and coronary heart disease. Meta-analysis of prospective studies.  Circulation. 2000;  102 1082-1085
  • 26 Wiklund O, Angelin B, Olofsson S O et al.. Apolipoprotein(a) and ischaemic heart disease in familial hypercholesterolaemia.  Lancet. 1990;  335 1360-1363
  • 27 Seed M, Hoppichler F, Reaveley D et al.. Relation of serum lipoprotein(a) concentration and apolipoprotein(a) phenotype to coronary heart disease in patients with familial hypercholesterolemia.  N Engl J Med. 1990;  322 1494-1499
  • 28 Carmena R, Lussier-Cacan S, Roy M et al.. Lp(a) levels and atherosclerotic vascular disease in a sample of patients with familial hypercholesterolemia sharing the same gene defect.  Arterioscler Thromb Vasc Biol. 1996;  16 129-136
  • 29 Davidson M H. Introduction: utilization of surrogate markers of atherosclerosis for the clinical development of pharmaceutical agents.  Am J Cardiol. 2001;  87 1A-7A
  • 30 Howard G, Wagenknecht L E, Burke G L et al.. Cigarette smoking and progression of atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study.  JAMA. 1998;  279 119-124
  • 31 Wittekoek M E, De Groot E, Prins M H et al.. Differences in intima-media thickness in the carotid and femoral arteries in familial hypercholesterolemic heterozygotes with and without clinical manifestations of cardiovascular disease.  Atherosclerosis. 1999;  146 271-279
  • 32 O'Leary D H, Polak J F, Kronmal R A et al.. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group.  N Engl J Med. 1999;  340 14-22
  • 33 Smilde T J, van den Berkmortel F W, Boers G H et al.. Carotid and femoral artery wall thickness and stiffness in patients at risk for cardiovascular disease, with special emphasis on hyperhomocysteinemia.  Arterioscler Thromb Vasc Biol. 1998;  18 1958-1963
  • 34 Smilde T J, van Wissen S, Wollersheim H et al.. Effect of aggressive versus conventional lipid lowering on atherosclerosis progression in familial hypercholesterolaemia (ASAP): a prospective, randomised, double-blind trial.  Lancet. 2001;  357 577-581
  • 35 Stary H C, Chandler A B, Glagov S et al.. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.  Circulation. 1994;  89 2462-2478
  • 36 Vogel R A. Cholesterol lowering and endothelial function.  Am J Med. 1999;  107 479-487
  • 37 Neunteufl T, Heher S, Katzenschlager R et al.. Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain.  Am J Cardiol. 2000;  86 207-210
  • 38 Suwaidi J A, Hamasaki S, Higano S T et al.. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction.  Circulation. 2000;  101 948-954
  • 39 Celermajer D S, Sorensen K E, Gooch V M et al.. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis.  Lancet. 1992;  340 1111-1115
  • 40 Sorensen K E, Celermajer D S, Georgakopoulos D et al.. Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level.  J Clin Invest. 1994;  93 50-55
  • 41 Mietus-Snyder M, Malloy M J. Endothelial dysfunction occurs in children with two genetic hyperlipidemias: improvement with antioxidant vitamin therapy.  J Pediatr. 1998;  133 35-40
  • 42 Stroes E S, Koomans H A, de Bruin T W, Rabelink T J. Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering medication.  Lancet. 1995;  346 467-471
  • 43 Marchesi S, Lupattelli G, Siepi D et al.. Short-term atorvastatin treatment improves endothelial function in hypercholesterolemic women.  J Cardiovasc Pharmacol. 2000;  36 617-621
  • 44 Holm T, Andreassen A K, Ueland T et al.. Effect of pravastatin on plasma markers of inflammation and peripheral endothelial function in male heart transplant recipients.  Am J Cardiol. 2001;  87 815-818,A9
  • 45 Alonso R, Mata P, De Andres R et al.. Sustained long-term improvement of arterial endothelial function in heterozygous familial hypercholesterolemia patients treated with simvastatin.  Atherosclerosis. 2001;  157 423-429
  • 46 Penny W F, Ben Yehuda O, Kuroe K et al.. Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: heterogeneity of segmental response and correlation with plasma-oxidized low density lipoprotein.  J Am Coll Cardiol. 2001;  37 766-774
  • 47 Masumoto A, Hirooka Y, Hironaga K et al.. Effect of pravastatin on endothelial function in patients with coronary artery disease (cholesterol-independent effect of pravastatin).  Am J Cardiol. 2001;  88 1291-1294
  • 48 Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group.  Br Med J. 1991;  303 893-896
  • 49 Sijbrands E J, Westendorp R G, Defesche J C et al.. Mortality over two centuries in large pedigree with familial hypercholesterolaemia: family tree mortality study.  BMJ. 2001;  322 1019-1023
  • 50 Burke G L, Arnold A M, Bild D E et al.. Factors associated with healthy aging: the cardiovascular health study.  J Am Geriatr Soc. 2001;  49 254-262
  • 51 Slimane M N, Lestavel S, Sun X et al.. FH-Souassi: a founder frameshift mutation in exon 10 of the LDL- receptor gene, associated with a mild phenotype in Tunisian families.  Atherosclerosis. 2001;  154 557-565
  • 52 Watts G F. Postprandial lipaemia in familial hypercholesterolaemia: clinical and metabolic significance.  Atherosclerosis. 2000;  148 426-428
  • 53 McNamara J R, Shah P K, Nakajima K et al.. Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: results from the Framingham Heart Study.  Atherosclerosis. 2001;  154 229-236
  • 54 Sauvage Nolting P RW, Twickler M B, Dallinga-Thie G M et al.. Elevated remnant-like particles in heterozygous familial hypercholesterolemia and response to statin therapy.  Circulation. 2002;  106 788-792
  • 55 Mohrschladt M F, Weverling-Rijnsburger A W, de Man F H et al.. Hyperlipoproteinemia affects cytokine production in whole blood samples ex vivo. The influence of lipid-lowering therapy.  Atherosclerosis. 2000;  148 413-419
  • 56 Van Wissen S, Trip M D, Smilde T J, de Graaf J, Stalenhoef A F, Kastelein J J. Differential hs-CRP reduction in patients with familial hypercholesterolemia treated with aggressive or conventional statin therapy.  Atherosclerosis. 2002;  165 361-366
  • 57 Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies.  JAMA. 1998;  279 1477-1482
  • 58 Otto C, Ritter M M, Richter W O et al.. Hemorrheologic abnormalities in defined primary dyslipoproteinemias with both high and low atherosclerotic risks.  Metabolism. 2001;  50 166-170
  • 59 Hobbs H H, Russell D W, Brown M S, Goldstein J L. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein.  Annu Rev Genet. 1990;  24 133-170
  • 60 Hobbs H H, Brown M S, Goldstein J L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia.  Hum Mutat. 1992;  1 445-466
  • 61 Chaves F J, Real J T, Garcia-Garcia A B et al.. Large rearrangements of the LDL receptor gene and lipid profile in a FH Spanish population.  Eur J Clin Invest. 2001;  31 309-317
  • 62 Tonstad S, Joakimsen O, Stensland-Bugge E et al.. Carotid intima-media thickness and plaque in patients with familial hypercholesterolaemia mutations and control subjects.  Eur J Clin Invest. 1998;  28 971-979
  • 63 Umans-Eckenhausen M AW, Sijbrands E JG, Kastelein J JP, Defesche J C. Low-Density Lipoprotein-receptor gene mutations and cardiovascular risk in a large genetic cascade screening population.  Circulation. 2002;  106 3031-3036
  • 64 Thompson G R, Seed M, Niththyananthan S et al.. Genotypic and phenotypic variation in familial hypercholesterolemia.  Arteriosclerosis. 1989;  9 I75-I80
  • 65 Kastelein J J, Jukema J W, Zwinderman A H et al.. Lipoprotein lipase activity is associated with severity of angina pectoris. REGRESS Study Group.  Circulation. 2000;  102 1629-1633
  • 66 Kastelein J J, Ordovas J M, Wittekoek M E et al.. Two common mutations (D9N, N291S) in lipoprotein lipase: a cumulative analysis of their influence on plasma lipids and lipoproteins in men and women.  Clin Genet. 1999;  56 297-305
  • 67 Wittekoek M E, Pimstone S N, Reymer P W et al.. A common mutation in the lipoprotein lipase gene (N291S) alters the lipoprotein phenotype and risk for cardiovascular disease in patients with familial hypercholesterolemia.  Circulation. 1998;  97 729-735
  • 68 Wittekoek M E, Moll E, Pimstone S N et al.. A frequent mutation in the lipoprotein lipase gene (D9N) deteriorates the biochemical and clinical phenotype of familial hypercholesterolemia.  Arterioscler Thromb Vasc Biol. 1999;  19 2708-2713
  • 69 Carmena R, Roy M, Roederer G et al.. Coexisting dysbetalipoproteinemia and familial hypercholesterolemia. Clinical and laboratory observations.  Atherosclerosis. 2000;  148 113-124
  • 70 Berglund L, Wiklund O, Eggertsen G et al.. Apolipoprotein E phenotypes in familial hypercholesterolaemia: importance for expression of disease and response to therapy.  J Intern Med. 1993;  233 173-178
  • 71 Wiegman A, Sijbrands E J, Rodenburg J et al.. The apolipoprotein epsilon4 allele confers additional risk in children with familial hypercholesterolemia.  Pediatr Res. 2003;  53 1008-1012
  • 72 Ordovas J M, Cupples L A, Corella D et al.. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study.  Arterioscler Thromb Vasc Biol. 2000;  20 1323-1329
  • 73 Carmena-Ramon R, Ascaso J F, Real J T et al.. Association between the TaqIB polymorphism in the cholesteryl ester transfer protein gene locus and plasma lipoprotein levels in familial hypercholesterolemia.  Metabolism. 2001;  50 651-656
  • 74 Leus F R, Wittekoek M E, Prins J et al.. Paraoxonase gene polymorphisms are associated with carotid arterial wall thickness in subjects with familial hypercholesterolemia.  Atherosclerosis. 2000;  149 371-377
  • 75 Leus F R, Zwart M, Kastelein J J, Voorbij H A. PON2 gene variants are associated with clinical manifestations of cardiovascular disease in familial hypercholesterolemia patients.  Atherosclerosis. 2001;  154 641-649
  • 76 Wierzbicki A S, Lambert-Hammill M, Lumb P J, Crook M A. Renin-angiotensin system polymorphisms and coronary events in familial hypercholesterolemia.  Hypertension. 2000;  36 808-812
  • 77 US MedPed program .Available at: http://www.medped.org/who
  • 78 Winder A F, Day L B. Premature corneal arcus in familial hypercholesterolemia is characteristic but not a marker of individual coronary risk.  Atherosclerosis. 1997;  134 48
  • 79 Williams R R, Hopkins P N, Hunt S C et al.. Population-based frequency of dyslipidemia syndromes in coronary-prone families in Utah.  Arch Intern Med. 1990;  150 582-588
  • 80 Koivisto P V, Koivisto U M, Miettinen T A, Kontula K. Diagnosis of heterozygous familial hypercholesterolemia. DNA analysis complements clinical examination and analysis of serum lipid levels.  Arterioscler Thromb. 1992;  12 584-592
  • 81 Nora J J, Lortscher R M, Spangler R D, Bilheimer D W. Familial hypercholesterolemia with “normal” cholesterol in obligate heterozygotes.  Am J Med Genet. 1985;  22 585-591
  • 82 Williams R R, Hunt S C, Schumacher M C et al.. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics.  Am J Cardiol. 1993;  72 171-176
  • 83 Heath K E, Gudnason V, Humphries S E, Seed M. The type of mutation in the low density lipoprotein receptor gene influences the cholesterol-lowering response of the HMG-CoA reductase inhibitor simvastatin in patients with heterozygous familial hypercholesterolaemia.  Atherosclerosis. 1999;  143 41-54
  • 84 Fouchier S W, Defesche J C, Umans-Eckenhausen M W, Kastelein J P. The molecular basis of familial hypercholesterolemia in The Netherlands.  Hum Genet. 2001;  109 602-615
  • 85 The recognition and management of hyperlipidaemia in adults: a policy statement of the European Atherosclerosis Society.  Eur Heart J. 1988;  9 571-600
  • 86 Stein E, Strutt K L, Miller E et al.. Rosuvastatin (20, 40 and 80 mg) reduces LDL-C, raises HDL-C, and achieves treatment goals more effectively than atorvastatin (20, 40 and 80 mg) in patients with heterozygous familial hypercholesterolemia [abstract].  Atherosclerosis. 2001;  2(Suppl 2) 90
  • 87 Stein E, Strutt K L, Miller E et al.. ZD44522 is superior to atorvastatin in the treatment of patients with hterozygous familial hypercholesterolemia [abstract].  J Am Coll Cardiol. 2001;  37 (Suppl A) 292A
  • 88 Kosoglou T, Meyer I, Musiol B et al.. Pharmacodynamic interaction between the new selective cholesterol absorption inhibitor ezetimibe and simvastatin.  Atherosclerosis. 2000;  151 135
  • 89 Obarzanek E, Kimm S Y, Barton B A et al.. Long-term safety and efficacy of a cholesterol-lowering diet in children with elevated low-density lipoprotein cholesterol: seven-year results of the Dietary Intervention Study in Children (Dros Inf ServC).  Pediatrics. 2001;  107 256-264
  • 90 American Academy of Pediatrics . National Cholesterol Education Program: Report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents.  Pediatrics. 1992;  89 525-584
  • 91 Tonstad S, Knudtzon J, Sivertsen M et al.. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia.  J Pediatr. 1996;  129 42-49
  • 92 Stein E A. Treatment of familial hypercholesterolemia with drugs in children.  Arteriosclerosis. 1989;  9 I145-I151
  • 93 Ducobu J, Brasseur D, Chaudron J M et al.. Simvastatin use in children.  Lancet. 1992;  339 1488
  • 94 Knipscheer H C, Boelen C C, Kastelein J J et al.. Short-term efficacy and safety of pravastatin in 72 children with familial hypercholesterolemia.  Pediatr Res. 1996;  39 867-871
  • 95 Stein E A, Illingworth D R, Kwiterovich Jr P O et al.. Efficacy and safety of lovastatin in adolescent males with heterozygous familial hypercholesterolemia: a randomized controlled trial.  JAMA. 1999;  281 137-144
  • 96 Chaves F J, Real J T, Garcia-Garcia A B et al.. Genetic diagnosis of familial hypercholesterolemia in a South European outbreed population: influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol.  J Clin Endocrinol Metab. 2001;  86 4926-4932
  • 97 Vohl M C, Szots F, Lelievre M et al.. Influence of LDL receptor gene mutation and apo E polymorphism on lipoprotein response to simvastatin treatment among adolescents with heterozygous familial hypercholesterolemia.  Atherosclerosis. 2002;  160 361-368
  • 98 Sijbrands E J, Lombardi M P, Westendorp R G et al.. Similar response to simvastatin in patients heterozygous for familial hypercholesterolemia with mRNA negative and mRNA positive mutations.  Atherosclerosis. 1998;  136 247-254

 Dr.
J.J. P Kastelein

Department of Vascular Medicine, Academic Medical Center at the University of Amsterdam

Postbox 22660, 1100 DD

Amsterdam, The Netherlands

Email: e.vandongen@amc.uva.nl

    >