Skip to main content

Advertisement

Log in

New Modalities of Pulmonary Rehabilitation in Patients with Chronic Obstructive Pulmonary Disease

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Pulmonary rehabilitation has been shown to be an important part of the management of patients with chronic obstructive pulmonary disease (COPD). Exercise training is the corner stone of a comprehensive, multidisciplinary pulmonary rehabilitation in COPD and has been shown to improve health-related quality of life and exercise capacity. Nevertheless, not every COPD patient responds well to pulmonary rehabilitation.

Future trials should focus on new additions to conventional pulmonary rehabilitation programmes to optimise its effects on health-related quality of life, exercise capacity, body composition and muscle function in patients with COPD. Therefore, a patient-tailored approach is inevitable. Advantages and disadvantages of new modalities of pulmonary rehabilitation will be outlined in detail, including the following: endurance training and long-acting bronchodilatators; endurance training and technical modalities (inspiratory pressure support and inspiratory muscle training); interval training; resistance training; transcutaneous neuromuscular electrical stimulation; and exercise training and supplements (oxygen, oral creatine, anabolic steroids and polyunsaturated fatty acids).

Based on well defined baseline characteristics, patients should most probably be individually selected. At present, these new modalities of pulmonary rehabilitation have been shown to improve body composition, skeletal muscle function and sometimes also exercise capacity. However, the translation to an improved health-related quality of life is mostly lacking, and cost effectiveness and long-term effects have not been studied. Moreover, future trials should study the effects of pulmonary rehabilitation in elderly patients with restrictive pulmonary diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

  2. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Pauwels RA, Buist AS, Calverley PM, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLB/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) workshop summary. Am J Respir Crit Care Med 2001; 163 (5): 1256–76

    PubMed  CAS  Google Scholar 

  2. Breslin E, van der Schans C, Breukink S, et al. Perception of fatigue and quality of life in patients with COPD. Chest 1998; 114 (4): 958–64

    PubMed  CAS  Google Scholar 

  3. Pinto-Plata VM, Cote C, Cabral H, et al. The 6-min walk distance: change over time and value as a predictor of survival in severe COPE. Eur Respir J 2004; 23 (1): 28–33

    PubMed  CAS  Google Scholar 

  4. Schols AM, Broekhuizen R, Weling-Scheepers CA, et al. Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr 2005; 82 (1): 53–9

    PubMed  CAS  Google Scholar 

  5. Vestbo J, Prescott E, Almdal T, et al. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med 2006; 173 (1): 79–83

    PubMed  Google Scholar 

  6. Marquis K, Debigare R, Lacasse Y, et al. Midthigh muscle cross-sectional area is a better predictor of mortality than body mass index in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2002; 166 (6): 809–13

    PubMed  Google Scholar 

  7. Oga T, Nishimura K, Tsukino M, et al. Longitudinal changes in health staffs using the chronic respiratory disease questionnaire and pulmonary function in patients with stable chronic obstructive pulmonary disease. Qual Life Res 2004; 13 (6): 1109–16

    PubMed  CAS  Google Scholar 

  8. Pitta F, Troosters T, Spurt MA, et al. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 171 (9): 9727

    Google Scholar 

  9. Baarends EM, Schols AM, Mostert R, et al. Peak exercise response in relation to tissue depletion in patients with chronic obstructive pulmonary disease. Eur Respir J 1997; 10 (12): 2807–13

    PubMed  CAS  Google Scholar 

  10. Garcia-Aymerich J, Famero E, Telex MA, et al. Risk factors of readmission to hospital for a COPE, exacerbation: a prospecfive study. Thorax 2003; 58 (2): 100–5

    PubMed  CAS  Google Scholar 

  11. Nishimura K, Izumi T, Tsukino M, et al. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPE. Chest 2002; 121 (5): 1434–40

    PubMed  Google Scholar 

  12. Vogiatzis I, Williamson AT, Miles J, et al. Physiological response to moderate exercise workloads in a pulmonary rehabilitation program in patients with varying degrees of airflow obstruction. Chest 1999; 116 (5): 1200–7

    Google Scholar 

  13. Maltais E, LeBlanc P, Jobin J, et al. Intensity of framing and physiologic adaptation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1997; 155 (2): 555–61

    PubMed  CAS  Google Scholar 

  14. Wouters EF. Management of severe COPE. Lancet 2004; 364 (9437): 883–95

    PubMed  CAS  Google Scholar 

  15. Bourbeau J, Julien M, Maltais E, et al. Reduction of hospital utilization in patients with chronic obstructive pulmonary disease: a disease-specific self-management intervention. Arch Intern Med 2003; 163 (5): 585–91

    PubMed  Google Scholar 

  16. Lacasse Y, Brosseau L, MilneS, et al. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2002; (3): CDO03793

    Google Scholar 

  17. Goldstein RS, Gorr EH, Stubbing D, et al. Randomised controlled trial of respiratory rehabilitation. Lancet 1994; 344 (8934): 1394–7

    PubMed  CAS  Google Scholar 

  18. Spmit MA, Gosselink R, Troosters T, et al. Low-grade systomic inflammation and the response to exercise training in patients with advanced COPE. Chest 2005; 128 (5): 3183–90

    Google Scholar 

  19. Spout MA, Gosselink R, Troosters T, et al. Resistance versus endurance training in patients with COPD and peripheral muscle weakness. Eur Respir J 2002; 19 (6): 1072–8

    Google Scholar 

  20. Troosters T, Gosselink R, Decramer M. Short- and long-term effects of outpatient rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Am J Med 2000; 109 (3): 207–12

    PubMed  CAS  Google Scholar 

  21. Troosters T, Gosselink R, Decramer M. Exercise framing in COPD: how to distinguish responders from nonresponders. J Cardiopulm Rehabil 2001; 21 (1): 10–7

    PubMed  CAS  Google Scholar 

  22. Ries AL, Make BJ, Lee SM, et al. The effects of pulmonary rehabilitation in the national emphysema treatment trial. Chest 2005; 128 (6): 3799–809

    PubMed  Google Scholar 

  23. Garrorl R, Marshall J, Barley E, et al. Predictors of success and failure in pulmonary rehabilitation. Eur Respir J 2006; 27 (4): 788–94

    Google Scholar 

  24. Nici L, Donner C, Wouters E, et al. American thoracic society/european respiratory society statement on pulmonary rehabilitation. Am J Respir Crit Care Med 2006; 173 (12): 1390–413

    PubMed  Google Scholar 

  25. Spout MA, Troosters T, Trappenburg JC, et al. Exercise training during rehabilitation of patients with COPE: a current perspective. Patient Educ Coins 2004; 52 (3): 243–8

    Google Scholar 

  26. Hamilton AL, Mllian KJ, Summers E, et al. Muscle strength, symptom intensity, and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med 1995; 152 (6 Pt 1): 2021–31

    PubMed  CAS  Google Scholar 

  27. Hamilton AL, Killian KJ, Summers E, et al. Symptom intensity and subjective limitation to exercise in patients with cardiorespiratory disorders. Chest 1996; 110 (5): 1255–63

    PubMed  CAS  Google Scholar 

  28. Baarends EM, Schols AM, Akkermans MA, et al. Decreased mechanical efficiency in clinically stable patients with COPD. Thorax 1997; 52 (11): 981–6

    PubMed  CAS  Google Scholar 

  29. Troosters T, Gosselink R, Decraner M. Six minute walking distance in healthy elderly subjects. Eur Respir J 1999; 14 (2): 270–4

    PubMed  CAS  Google Scholar 

  30. Gosselink R, Troosters T, Decraner M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med 1996; 153 (3): 976–80

    PubMed  CAS  Google Scholar 

  31. Oga T, Nishimura K, Tsukino M, et al. Exercise capacity deterioration in patients with COPD: longitudinal evaluation over 5 years. Chest 2005; 128 (1): 62–9

    PubMed  Google Scholar 

  32. Folgering H, von Herwaarden C. Exercise limitations inpatients with pulmonary diseases. Int J Sports Med 1994; 15 (3): 107–11

    PubMed  CAS  Google Scholar 

  33. American Thoracic Society and European Respiratory Society. Skeletal muscle dysfunction in chronic obstructive pulmonary disease: a statement of the American Thoracic Society and European Respiratory Society. Am J Respir Crit Care Med 1999; 159 (4 Pt 2): 5140

    Google Scholar 

  34. Carter R, Peavler M, Zinkgraf S, et al. Predicting maximal exercise ventilation in patients with chronic obstructive pulmonary disease. Chest 1987; 92 (2): 253–9

    PubMed  CAS  Google Scholar 

  35. Polkey MI, Kyroussis D, Keilty SE, et al. Exhaustive treadmill exercise does not reduce twitch transdiaphragmatic pressure in patients with COPD. Am J Respir Crit Care Med 1995; 152 (3): 959–64

    PubMed  CAS  Google Scholar 

  36. Mador MJ, Kufel TJ, Pineda LA, et al. Diaphragmatic fatigue and high-intensity exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2000; 161 (1): 118–23

    PubMed  CAS  Google Scholar 

  37. Sinderby C, Spahija J, Beck J, et al. Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163 (7): 1637–41

    Google Scholar 

  38. O’Donnell DE. Hyperinflation, dyspnea, and exercise intolerance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006; 3 (2): 1804

    Google Scholar 

  39. O’Donnell DE, Revill SM, Webb KA. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 164 (5): 770–7

    PubMed  Google Scholar 

  40. Puente-Maestu L, Garcia de Pedro J, Martinez-Abad Y, et al. Dyspnea, ventilatiry pattern, and changes in dynastic hyperinflation related to the intensity of constant workrate exercise in COPD. Chest 2005; 128 (2): 651–6

    PubMed  Google Scholar 

  41. Mineo TC, Pompeo E, Rogliani P, et al. Effect of lung volume reduction surgery for severe emphysema on right ventricular function. Am J Respir Crit Care Med 2002; 165 (4): 489–94

    PubMed  Google Scholar 

  42. Stark-Leyva KN, Beek KC, Johnson BD. Influence of expiratory loading and hyperinflation on cardiac output during exercise. J Appl Physiol 2004; 96 (5): 1920–7

    PubMed  Google Scholar 

  43. Stewart RI, Lewis CM. Cardiac output during exercise in patients with COPD. Chest 1986; 89 (2): 199–205

    PubMed  CAS  Google Scholar 

  44. Rutren FH, Cramer MJ, Grobbee DE, et al. Unrecognized heart failure in elderly patients with stable chronic obstructive pulmonary disease. Eur Heart J 2005; 26 (18): 1887–94

    Google Scholar 

  45. Gosker HR, Lencer NH, Franssen FM, et al. Striking sirndarifies in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD. Chest 2003; 123 (5): 1416–24

    PubMed  Google Scholar 

  46. Pendant M, Durand F, Palomba B, et al. 6-minute walk testing is more sensitive than maximal incremental cycle testing for detecting oxygen desaturation in patients with COPD. Chest 2003; 123 (5): 1401–7

    Google Scholar 

  47. van Stel HF, Bogaard JM, Rijssenbeek-Nouwens LH, et al. Multivariable assessment of the 6-min walking test in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163 (7): 1567–71

    PubMed  Google Scholar 

  48. Malmis F, Simard AA, Simard C, et al. Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med 1996; 153 (1): 288–93

    Google Scholar 

  49. Tardif C, Bonmarchand G, Gibon JF, et al. Respiratory response to CO2 in patients with chronic obstructive pulmonary disease in acute respiratory failure. Eur Respir J 1993; 6 (5): 619–24

    PubMed  CAS  Google Scholar 

  50. Saey D, Michaud A, Couillard A, et al. Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 171 (10): 1109–15

    PubMed  Google Scholar 

  51. Gosker HR, van Mameren H, van Dijk PJ, et al. Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J 2002; 19 (4): 617–25

    PubMed  CAS  Google Scholar 

  52. Allaire J, Malmis F, Doyon JF, et al. Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD. Thorax 2004; 59 (8): 673–8

    PubMed  CAS  Google Scholar 

  53. Malmis F, LeBlanc P, Whittom F, et al. Oxidative enzyme activities of the vastus laterals muscle and the functional status in patients with COPD. Thorax 2000; 55 (10): 848–53

    Google Scholar 

  54. Koechlin C, Couillard A, Simar D, et al. Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? Am J Respir Crit Care Med 2004; 169 (9): 1022–7

    PubMed  Google Scholar 

  55. Koechlin C, Couillard A, Cristol JP, et al. Does systenticinflammation trigger local exercise-induced oxidative stress in COPD? Eur Respir J 2004; 23 (4): 538–44

    PubMed  CAS  Google Scholar 

  56. Couillard A, Maltais F, Saey D, et al. Exercise-induced quadriceps oxidative stress and peripheral muscle dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003; 167 (12): 1664–9

    PubMed  Google Scholar 

  57. Schols AM, Sectors PB, Dingemans AM, et al. Prevalence and characteristics of nutritional depletion in patients with stable COPD eligible for pulmonary rehabilitation. Am Rev Respir Dis 1993; 147 (5): 1151–6

    PubMed  CAS  Google Scholar 

  58. Mllian KJ, Leblanc P, Martin DH, et al. Exercise capacity and ventilatiry, circulatory, and symptom limitation in patients with chronic airflow limtation. Am Rev Respir Dis 1992; 146 (4): 935–40

    Google Scholar 

  59. Man WD, Soliman MG, Gearing J, et al. Symptoms and quadriceps fatigability after walking and cycling in chronic obstruelive pulmonary disease. Am J Respir Crit Care Med 2003; 168 (5): 562–7

    PubMed  Google Scholar 

  60. Pepin V, Saey D, Whittom F, et al. Walking versus cycling: sensitivity to bronchodilation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005; 172 (12): 1517–22

    PubMed  Google Scholar 

  61. Calverley PM, Walker P. Chronic obstructive pulmonary disease. Lancet 2003; 362 (9389): 1053–61

    PubMed  CAS  Google Scholar 

  62. Wouters EF, Postma DS, Fokkens B, et al. Withdrawal of fluticasone propionate from combined salmeterol/fluticasone treatment in patients with COPD causes immediate and sustained disease deterioration: a randomised controlled trial. Thorax 2005; 60 (6): 480–7

    PubMed  CAS  Google Scholar 

  63. Ulrik CS. Efficacy of inhaled salnaeterol in the management of smokers with chronic obstructive pulmonary disease: a single centre randomised, double blind, placebo controlled, crossover study. Thorax 1995; 50 (7): 7504

    Google Scholar 

  64. van Noord JA, Autumn JL, Janssens E, et al. Comparison of dotropium once daily, formoterol twice daily and both combined once daily in patients with COPD. Eur Respir J 2005; 26 (2): 214–22

    PubMed  Google Scholar 

  65. Vincken W, van Noord JA, Greefliorst AP, et al. Improved health outcomes in patients with COPD during 1 years treatment with tiotropium. Eur Respir J 2002; 19 (2): 209–16

    PubMed  CAS  Google Scholar 

  66. Man WD, Mustfa N, Nikoletou D, et al. Effect of salmeterol on respiratory muscle activity during exercise in poorly reversible COPD. Thorax 2004; 59 (6): 471–6

    PubMed  CAS  Google Scholar 

  67. O’Donnell DE, Vorduc N, Fitzpatrick M, et al. Effect of salnoterol on the ventilatiry response to exercise in chronic obstructive pulmonary disease. Eur Respir J 2004; 24 (1): 86–94

    PubMed  Google Scholar 

  68. O’Donnell DE, Huge T, Gerken F, et al. Effects of dotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J 2004; 23 (6): 832–40

    PubMed  Google Scholar 

  69. Stockley RA, Chopra N, Rice L. Addition of salneterol to existing treatment in patients with COPD: a 12 month study. Thorax 2006; 61 (2): 122–8

    PubMed  CAS  Google Scholar 

  70. Casaburi R, Mahler DA, Jones PW, et al. A long-term evaluadon of once-daily inhaled dotropium in chronic obstutctive pulmonary disease. Eur Respir J 2002; 19 (2): 217–24

    PubMed  CAS  Google Scholar 

  71. Donohue JF, van Noord JA, Bateman ED, et al. A 6-month, placebo-controlled study comparing lung function and health status changes in COPD patients treated with dotropium or salneterol. Chest 2002; 122 (1): 47–55

    PubMed  CAS  Google Scholar 

  72. Jones PW, Bosh TK. Quality of life changes in COPD patients treated with salneterol. Am J Respir Crit Care Med 1997; 155 (4): 1283–9

    PubMed  CAS  Google Scholar 

  73. Malmis F, Hanulton A, Marciniuk D, et al. Improvements in symptom-fnuted exercise performance over 8h with oncedaily tiotropium in patients with COPD. Chest 2005; 128 (3): 1168–78

    Google Scholar 

  74. Casaburi R, Kukafka D, Cooper CB, et al. Improvement in exercise tolerance with the combination of dotropium and pulmonary rehabilitation in patients with COPD. Chest 2005; 127 (3): 809–17

    PubMed  CAS  Google Scholar 

  75. John M, Lange A, Hoemig S, et al. Prevalence of anemia in chronic obstructive pulmonary disease: comparison to other chronic diseases. Int J Cardiol 2006 Aug 28; 111 (3): 365–70

    PubMed  Google Scholar 

  76. O’Donnell DE, Bain DJ, Webb KA. Factors contributing to relief of exertional breathlessness during hyperoxia in chronic airflow linutation. Am J Respir Crit Care Med 1997; 155 (2): 530–5

    PubMed  Google Scholar 

  77. Woodcock AA, Gross ER, Geddes DM. Oxygen relieves breathlessness in “pink puffers”. Lancet 1981; I (8226): 907–9

    Google Scholar 

  78. Dean NC, Brown JK, Himelman RB, et al. Oxygen may improve dyspnea and endurance in patients with chronic obstmF five pulmonary disease and only mild hypoxenua. Am Rev Respir Dis 1992; 146 (4): 941–5

    PubMed  CAS  Google Scholar 

  79. Somfay A, Porszasz J, Lee SM, et al. Dose-response effect of oxygen on hyperinflation and exercise endurance in nonhypoxaenuc COPD patients. Eur Respir J 2001; 18 (1): 77–84

    PubMed  CAS  Google Scholar 

  80. Somfay A, Porszasz J, Lee SM, et al. Effect of hyperoxia on gas exchange and lactate kinetics following exercise onset in nonhypoxenuc COPD patients. Chest 2002; 121 (2): 393–400

    PubMed  Google Scholar 

  81. Emtner M, Porszasz J, Burns M, et al. Benefits of supplemental oxygen in exercise training in nonhypoxenuc chronic obstructive pulmonary disease parents. Am J Respir Crit Care Med 2003; 168 (9): 1034–42

    PubMed  Google Scholar 

  82. Wadell K, Henriksson-Larsen K, Lundgren R. Physical training with and without oxygen in patients with chronic obstructive pulmonary disease and exercise-induced hypoxaenua. J Rehabil Med 2001; 33 (5): 200–5

    PubMed  CAS  Google Scholar 

  83. Garord R, Paul EA, Wedzicha JA. Supplemental oxygen during pulmonary rehabilitation in patients with COPD with exercise hypoxaenua. Thorax 2000; 55 (7): 539–43

    Google Scholar 

  84. Laude EA, Duffy NC, Baveystock C, et al. The effect of helium and oxygen on exercise performance in COPD: a randomised crossover trial. Am J Respir Crit Care Med 2006 Apr 15; 173 (8): 865–70

    PubMed  Google Scholar 

  85. Palange P, Crinu E, Pellegrino R, et al. Supplemental oxygen and heliox: “new’ tools for exercise training in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2005; 11 (2): 145–8

    PubMed  Google Scholar 

  86. Laghi F, Tobin MJ. Disorders of the respiratory muscles. Am J Respir Crit Care Med 2003; 168 (1): 10–48

    Google Scholar 

  87. van’t Hul A, Gosselink R, Hollander P, et al. Acute effects of inspiratory pressure support during exercise in patients with COPD. Eur Respir J 2004; 23 (1): 34–40

    Google Scholar 

  88. van’t Hul A, Gosselink R, Hollander P, et al. Training with inspiratory pressure support in patients with severe COPD. Eur Respir J 2006; 27 (1): 65–72

    Google Scholar 

  89. Bianchi L, Foglio K, Ports R, et al. Lack of additional effect of adjunct of assisted ventilation to pulmonary rehabilitation in mild COPD patients. Respir Med 2002; 96 (5): 359–67

    PubMed  CAS  Google Scholar 

  90. Begin P, Grassino A. Inspiratory muscle dysfunction and chronic hypercapma in chronic obstructive pulmonary disease. Am Rev Respir Dis 1991; 143 (5 Pt 1): 905–12

    PubMed  CAS  Google Scholar 

  91. Foster S, Lopez D, Thomas 3rd HM. Pulmonary rehabilitation in COPD patients with elevated PCO2. Am Rev Respir Dis 1988; 138 (6): 1519–23

    PubMed  CAS  Google Scholar 

  92. Diaz O, Begin P, Andresen M, et al. Physiological and clinical effects of diurnal noninvasive ventilation in hypercapmc COPD. Eur Respir J 2005; 26 (6): 1016–23

    PubMed  CAS  Google Scholar 

  93. Lötters F, van Tol B, Kwakkel G, et al. Effects of controlled inspiratory muscle training in parents with COPD: a meta-analysis. Eur Respir J 2002; 20 (3): 570–6

    PubMed  Google Scholar 

  94. Mader MJ, Deniz O, Aggarwal A, et al. Effect of respiratory muscle endurance training in patients with COPD undergoing pulmonary rehabilitation. Chest 2005; 128 (3): 1216–24

    Google Scholar 

  95. American College of Sports Medicine Position Stand. The recomnended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexi bility in healthy adults. Med Sci Sports Exerc 1998; 30 (6): 975–91

    Google Scholar 

  96. Coppoolse R, Barstow TJ, Stringer WW, et al. Effect of acute bicarbonate administration on exercise responses of COPD patients. Med Sci Sports Exerc 1997; 29 (6): 725–32

    PubMed  CAS  Google Scholar 

  97. Vogiatzis I, Terzis G, Nanas S, et al. Skeletal muscle adaptadons to interval training in patients with advanced COPD. Chest 2005; 128 (6): 3838–45

    PubMed  Google Scholar 

  98. Vogiatzis I, Nanas S, Roussos C. Interval training as an alternalive modality to continuous exercise in patients with COPD. Eur Respir J 2002; 20 (1): 129

    Google Scholar 

  99. Sabapathy S, Kingsley RA, Schneider DA, et al. Continuous and intermittent exercise responses in individuals with chronic obstructive pulmonary disease. Thorax 2004; 59 (12): 1026–31

    PubMed  CAS  Google Scholar 

  100. Vogiatzis I, Georgiadou O, Golemati S, et al. Patterns ofdynamic hyperinflation during exercise and recovery inpatients with severe chronic obstructive pulmonary disease. Thorax 2005; 60 (9): 723–9

    PubMed  CAS  Google Scholar 

  101. Ortega F, Toral J, Cejudo P, et al. Comparison of effects of strength and endurance training in patients with chronic obstructivepulmonary disease. Am J Respir Ctit Care Med 2002; 166 (5): 669–74

    Google Scholar 

  102. Probst VS, Troosters T, Pitta F, et al. Cardiopulmonary stress during exercise training in patients with COPD. Eur Respir J 2006; 27 (6): 1110–8

    PubMed  CAS  Google Scholar 

  103. Bernard S, Whittom F, Leblanc P, et al. Aerobic and strength training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999; 159 (3): 896–901

    PubMed  CAS  Google Scholar 

  104. Mador MJ, Bozkanat E, Aggarwal A, et al. Endurance and strength training in patients with COPD. Chest 2004; 125 (6): 2036–45

    PubMed  Google Scholar 

  105. Zanotti E, Felicetti G, Maini M, et al. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest 2003; 124 (1): 292–6

    PubMed  Google Scholar 

  106. Neder JA, Sword D, Ward SA, et al. Home based neuromuscular electrical stimulation as a new rehabilitative strategy for severely disabled patients with chronic obstructive pulmonary disease (COPD). Thorax 2002; 57 (4): 333–7

    PubMed  CAS  Google Scholar 

  107. Lake DA. Neuromuscular electrical stimulation: an overview and its application in the treatment of sports injuries. Sports Med 1992; 13 (5): 320–36

    PubMed  CAS  Google Scholar 

  108. McMiken OF, Todd-Smith M, Thompson C. Strengthening of human quadriceps muscles by cutaneous electrical stimulation. Scand J Rehabil Med 1983; 15 (1): 25–8

    PubMed  CAS  Google Scholar 

  109. Serres I, Gautier V, Varray A, et al. Impaired skeletal muscle endurance related to physical inactivity and altered lung funclion in COPD patients. Chest 1998; 113 (4): 900–5

    PubMed  CAS  Google Scholar 

  110. Broeldruizen R, Wouters EF, Creutzberg EC, et al. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 2006; 61 (1): 17–22

    Google Scholar 

  111. Spurt MA, Gosselink R, Troosters T, et al. Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax 2003; 58 (9): 752–6

    Google Scholar 

  112. Wouters EJ, Creutzberg EC, Schols AM. Systemic effects in COPD. Chest 2002; 121 (5 Suppl.): 1275–305

    Google Scholar 

  113. Vandenberghe K, Goris M, Van Hecke P, et al. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol 1997; 83 (6): 2055–63

    PubMed  CAS  Google Scholar 

  114. Chrusch MJ, Chilibeck PD, Chad KE, et al. Creatine supplementation combined with resistance training in older men. Med Sci Sports Exerc 2001; 33 (12): 2111–7

    PubMed  CAS  Google Scholar 

  115. Hespel P, Op’t Eijnde B, Van Leemputte M, et al. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 2001; 536 (Pt 2): 625–33

    PubMed  CAS  Google Scholar 

  116. Vorgerd M, Grehl T, Lager M, et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Nemol 2000; 57 (7): 956–63

    CAS  Google Scholar 

  117. Mazzini L, Balzarini C, Colombo R, et al. Effects of creatine supplementation on exercise performance and muscular strength in amyotrophiclateral sclerosis: preliminary results. J Neurol Sci 2001; 191 (1–2): 139–44

    PubMed  CAS  Google Scholar 

  118. Iacobs PL, Mahoney ET, Cohn KA, et al. Oral creatine supplementation enhances upper extrenuty work capacity in persons with cervical-level spinal cord injury. Arch Phys Med Rehabil 2002; 83 (1): 19–23

    Google Scholar 

  119. Gordon A, Hultman E, Kaijser L, et al. Creatine supplementadon in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovasc Res 1995; 30 (3): 413–8

    PubMed  CAS  Google Scholar 

  120. Felber S, Skladal D, Wyss M, et al. Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 31P magnetic resonance spectroscopy study. Nemol Res 2000; 22 (2): 145–50

    CAS  Google Scholar 

  121. Fuld JP, Kilduff LP, Neder JA, et al. Creatine supplementation during pulmonary rehabilitation in chronic obstructve pulmonary disease. Thorax 2005; 60 (7): 531–7

    PubMed  CAS  Google Scholar 

  122. Creutzberg EC, Casaburi R. Endocrinological disturbances in chronic obstructive pulmonary disease. Eur Respir J Suppl 2003; 46: 765–805

    Google Scholar 

  123. Van Vliet M, Spout MA, Verleden G, et al. Hypogonadism, quadriceps weakness and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005 Nov 1; 172 (9): 1105–11

    PubMed  Google Scholar 

  124. Schols AM, Sectors PB, Mostert R, et al. Physiologic effects of nutritional support and anabolic steroids in patients with chronic obstructive pulmonary disease: a placebo-controlled randomized trial. Am J Respir Crit Care Med 1995; 152 (4 Pt 1): 1268–74

    PubMed  CAS  Google Scholar 

  125. Creutzberg EC, Wouters EJ, Mostert R, et al. A role for anabolic steroids in the rehabilitation of patients with COPD7 A double-blind, placebo-controlled, randomized trial. Chest 2003; 124 (5): 1733–42

    PubMed  CAS  Google Scholar 

  126. Casaburi R, Bhasin S, Cosentino L, et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. Am J Respir Ctit Care Med 2004; 170 (8): 870–8

    Google Scholar 

  127. Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Sec 2003; 51 (1): 101–15; discussion 115

    Google Scholar 

  128. Broeldruizen R, Wouters EF, Creutzberg EC, et al. Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease. Thorax 2005; 60 (5): 376–82

    Google Scholar 

  129. Sun D, Krishnan A, Zaman K, et al. Dietary n-3 fatty acids decrease ostecclastogenesis and loss of bone mass in ovariectorrized mice. J Bone Miner Res 2003; 18 (7): 1206–16

    PubMed  CAS  Google Scholar 

  130. Bolton CE, Ionescu AA, Shiels KM, et al. Associated loss of fat free mass and bone mineral density in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2004; 170 (12): 1286–93

    PubMed  Google Scholar 

  131. Mimeo TC, Ambrogi V, Mimeo D, et al. Bone mineral density improvement after lung volume reduction surgery for severe emphysema. Chest 2005; 127 (6): 1960–6

    Google Scholar 

  132. Guccione AA, Tolson DT, Anderson JJ, et al. The effects of specific medical conditions on the functional limitations of elders in the Fram inghamStudy. Am J Public Health 1994; 84 (3): 351–8

    PubMed  CAS  Google Scholar 

  133. Yohamnes AM, Baldwin RC, Connolly M. Mortality predictors in disabling chronic obstructive pulmonary disease in old age. Age Ageing 2002; 31 (2): 137–40

    Google Scholar 

  134. Coronado M, Janssens JP, de Muralt B, et al. Walking activity measured by accelerometry during respiratory rehabilitation. J Cardiopulm Rehabil 2003; 23 (5): 357–64

    PubMed  Google Scholar 

  135. Steele BG, Belza B, Hunziker J, et al. Monitoring daily activity during pulmonary rehabilitation using a triaxial accelerometer. J Cardiopulm Rehabil 2003; 23 (2): 139–42

    PubMed  Google Scholar 

  136. Sewell L, Singh SJ, Williams JE, et al. Can individualized rehabilitation improve functional independence in elderly patients with COPD? Chest 2005; 128 (3): 1194–200

    PubMed  Google Scholar 

  137. Mercken EM, Hageman GJ, Schols AM, et al. Rehabilitation decreases exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005 Oct 15; 172 (8): 994–1001

    PubMed  Google Scholar 

  138. Pitta F, Troosters T, Spruit MA, et al. Does pulmonary rehabilitation improve physical activities in daily lift in COPD patients [abstract]? Eur Respir J 2006; 26: 181s

    Google Scholar 

  139. Pitta F, Troosters T, Probst VS, et al. Quantifying physical activity in daily life with questionnaires and motion sensors in COPD: a review. Eur Respir J 2006; 27 (5): 1040–55

    PubMed  CAS  Google Scholar 

  140. Cold BR, Cote CG, Maria JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004; 350 (10): 1005–12

    Google Scholar 

  141. Cote CG, Celli BR. Pulmonary rehabilitation and the BODE index in COPD. Eur Respir J 2005; 26 (4): 630–6

    Google Scholar 

  142. Biscione GL, Mugnaini L, Pasqua F, et al. BODE index and pulmonary rehabilitation in chronic respiratory failure [letter]. Eur Respir J 2006; 27 (6): 1320

    PubMed  CAS  Google Scholar 

  143. Couillard A, Koechlin C, Cristol JP, et al. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patents. Eur Respir J 2002; 20 (5): 1123–9

    PubMed  CAS  Google Scholar 

  144. Couillard A, Prefaut C. From muscle disuse to myopathy in COPE: potential contribution of oxidative stress. Eur Respir J 2005; 26 (4): 703–19

    PubMed  CAS  Google Scholar 

  145. Lou FM, Liu XJ, Li SQ et al. Circulating ghrelin in patents with chronic obstructive pulmonary disease. Nutrition 2005; 21 (7–8): 793–8

    Google Scholar 

  146. Nagaya N, Moriya J, Yasumma Y, et al. Effects of gluelin administration on left ventricular function, exercise capacity, and muscle wasting in patents with chronic heart failure. Circulation 2004; 110 (24): 3674–9

    PubMed  CAS  Google Scholar 

  147. Nagaya N, Bob T, Murakami S, et al. Treatment of cachexia with ghrelin in patents with COPD. Chest 2005; 128 (3): 1187–93

    PubMed  CAS  Google Scholar 

  148. Spurt MA, Thomeer MIJ Gosselink R, et al. Skeletal muscle weakness in patents with sarcoidosis and its relationship with exercise intolerance and reduced health status. Thorax 2005; 60 (1): 32–8

    Google Scholar 

  149. Nishiyama O, Taniguchi H, Kondoh Y, et al. Quadriceps weakness is related to exercise capacity in idiopathic pulmonary fibrosis. Chest 2005; 127 (6): 2028–33

    PubMed  Google Scholar 

  150. Spruit MA, Wouters EFM, Gosselink R. Rehabilitation programmes in sarcoidosis: a multidisciplinary approach. In: Great M, Costabel U, editors. European respiratory mono graph: sarcoidosis. Wakefield: European Respiratory Society Ltd., 2005: 316–26

    Google Scholar 

  151. Foster S, Thomas HM 3rd. Pulmonary rehabilitation in lung disease other than chronic obstructive pulmonary disease. Am Rev Respir Dis 1990; 141 (3): 601–4

    PubMed  CAS  Google Scholar 

  152. Spruit MA, Janssen PP, Willemsen SC, et al. Exercise capacity before and after an 8-week multidisciplinary inpatient rehabilitation program in lung cancer patient: a pilot study. Lung Cancer 2006 May; 52 (2): 257–60

    PubMed  Google Scholar 

  153. Franssen FM, Broeldmizen R, Janssen PP, et al. Effects of whole-body exercise training on body composition and funotonal capacity in normal-weight patients with COPD. Chest 2004; 125 (6): 2021–8

    PubMed  Google Scholar 

  154. Ando M, Mori A, Esaki H, et al. The effect of pulmonary rehabilitation in patents with post-tuberculosis lung disorder. Chest 2003; 123 (6): 1988–95

    PubMed  Google Scholar 

  155. Bobbie A, Chetta A, Carbognani P, et al. Changes in pulmonary function test and cardio-pulmonary exercise capacity in COPD patents after lobar pulmonary resection. EurJ Cardiothorac Sorg 2005 Nov; 28 (5): 754–8

    Google Scholar 

  156. Nicolett I, Cicoira M, Zanolla L, et al. Skeletal muscle abnormalides in chronic heart failure patents: relation to exercise capacity and therapeutic implications. Congest Heart Fail 2003; 9 (3): 148–54

    Google Scholar 

  157. Geddes EL, Reid WD, Crewe J, et al. Inspiratory muscle chiming in adults with chronic obstructive pulmonary disease: a systematic review. Respir Med 2005; 99 (11): 1440–58

    PubMed  Google Scholar 

  158. Broeldmizen R, Creutzberg EC, Weling-Scheepers CA, et al. Optmusing oral nutritional drink supplementation in patents with chronic obstructive pulmonary disease. Br J Nutr 2005; 93 (6): 965–71

    Google Scholar 

Download references

Acknowledgements

Professor Wouters received research grants between 2003 and 2006 from GlaxoSmithKline, AstraZeneca, Boehringer Ingelheim, Centocor and Numico. No other sources of funding were used to assist in the preparation of this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn A. Spruit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spruit, M.A., Wouters, E.F.M. New Modalities of Pulmonary Rehabilitation in Patients with Chronic Obstructive Pulmonary Disease. Sports Med 37, 501–518 (2007). https://doi.org/10.2165/00007256-200737060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200737060-00004

Keywords

Navigation