Skip to main content
Log in

Therapeutic Potential of Copper Chelation with Triethylenetetramine in Managing Diabetes Mellitus and Alzheimer’s Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

This article reviews recent evidence, much of which has been generated by my group’s research programme, which has identified for the first time a previously unknown copper-overload state that is central to the pathogenesis of diabetic organ damage. This state causes tissue damage in the blood vessels, heart, kidneys, retina and nerves through copper-mediated oxidative stress. This author now considers this copper-overload state to provide an important new target for therapeutic intervention, the objective of which is to prevent or reverse the diabetic complications.

Triethylenetetramine (TETA) has recently been identified as the first in a new class of anti-diabetic molecules through the original work reviewed here, thus providing a new use for this molecule, which was previously approved by the US FDA in 1985 as a second-line treatment for Wilson’s disease. TETA acts as a highly selective divalent copper (CuII) chelator that prevents or reverses diabetic copper overload, thereby suppressing oxidative stress. TETA treatment of diabetic animals and patients has identified and quantified the interlinked defects in copper metabolism that characterize this systemic copper overload state. Copper overload in diabetes mellitus differs from that in Wilson’s disease through differences in their respective causative molecular mechanisms, and resulting differences in tissue localization and behaviour of the excess copper.

Elevated pathogenetic tissue binding of copper occurs in diabetes. It may well be mediated by advanced-glycation endproduct (AGE) modification of susceptible amino-acid residues in long-lived fibrous proteins, for example, connective tissue collagens in locations such as blood vessel walls. These AGE modifications can act as localized, fixed endogenous chelators that increase the chelatable-copper content of organs such as the heart and kidneys by binding excessive amounts of catalytically active CuII in specific vascular beds, thereby focusing the related copper-mediated oxidative stress in susceptible tissues.

In this review, summarized evidence from our clinical studies in healthy volunteers and diabetic patients with left-ventricular hypertrophy, and from nonclinical models of diabetic cardiac, arterial, renal and neural disease is used to construct descriptions of the mechanisms by which TETA treatment prevents injury and regenerates damaged organs. Our recent phase II proof-of-principle studies in patients with type 2 diabetes and in nonclinical models of diabetes have helped to define the pathogenetic defects in copper regulation, and have shown that they are reversible by TETA. The drug tightly binds and extracts excess systemic CuII into the urine whilst neutralizing its catalytic activity, but does not cause systemic copper deficiency, even after prolonged use. Its physicochemical properties, which are pivotal for its safety and efficacy, clearly differentiate it from all other clinically available transition metal chelators, including D-penicillamine, ammonium tetrathiomolybdate and clioquinol.

The studies reviewed here show that TETA treatment is generally effective in preventing or reversing diabetic organ damage, and support its ongoing development as a new medicine for diabetes. Trientine (TETA dihydrochloride) has been used since the mid-1980s as a second-line treatment for Wilson’s disease, and our recent clinical studies have reinforced the impression that it is likely to be safe for long-term use in patients with diabetes and related metabolic disorders. There is substantive evidence to support the view that diabetes shares many pathogenetic mechanisms with Alzheimer’s disease and vascular dementia. Indeed, the close epidemiological and molecular linkages between them point to Alzheimer’s disease/vascular dementia as a further therapeutic target where experimental pharmacotherapy with TETA could well find further clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 1991; 10(5): 339–52

    Article  PubMed  CAS  Google Scholar 

  2. Wolff SP. Diabetes mellitus and free radicals: free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 1993 Jul; 49(3): 642–52

    PubMed  CAS  Google Scholar 

  3. Monnier VM. Transition metals redox: reviving an old plot for diabetic vascular disease. J Clin Invest 2001 Apr; 107(7): 799–801

    Article  PubMed  CAS  Google Scholar 

  4. Thomas MC, Baynes JW, Thorpe SR, et al. The role of AGEs and AGE inhibitors in diabetic cardiovascular disease. Curr Drug Targets 2005; 6: 453–74

    Article  PubMed  CAS  Google Scholar 

  5. Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Neurosci 2006; 7: 278–94

    Article  CAS  Google Scholar 

  6. Martinez A, Portero-Otin M, Pamplona R, et al. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 2010 Mar; 20(2): 281–97

    Article  PubMed  CAS  Google Scholar 

  7. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008 Jun; 57(6): 1446–54

    Article  PubMed  CAS  Google Scholar 

  8. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press, 2007

    Google Scholar 

  9. Gil JM, Rego AC. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 2008 Jun; 27(11): 2803–20

    Article  PubMed  Google Scholar 

  10. Browne SE, Ferrante RJ, Beal MF. Oxidative stress in Huntington’s disease. Brain Pathol 1999 Jan; 9(1): 147–63

    Article  PubMed  CAS  Google Scholar 

  11. Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Rad Biol Med 2010; 48: 629–41

    Article  PubMed  CAS  Google Scholar 

  12. Janson J, Laedtke T, Parisi JE, et al. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 2004 Feb; 53(2): 474–81

    Article  PubMed  CAS  Google Scholar 

  13. Cooper GJS, Aitken JF, Zhang S. Is type 2 diabetes an amyloidosis and does it really matter (to patients)? Diabetologia 2010; 53: 1011–6

    Article  PubMed  CAS  Google Scholar 

  14. Zhang S, Liu H, Yu H, et al. Fas-associated death receptor signaling evoked by human amylin in islet beta-cells. Diabetes 2008 Feb; 57(2): 348–56

    Article  PubMed  CAS  Google Scholar 

  15. Aitken JF, Loomes KM, Scott DW, et al. Tetracycline treatment retards the onset and slows the progression of diabetes in human amylin/islet amyloid polypeptide transgenic mice. Diabetes 2010 Jan; 59(1): 161–71

    Article  PubMed  CAS  Google Scholar 

  16. Panel on Dietary Antioxidants and Related Compounds, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Use of Dietary Reference Intakes on Upper Reference Levels of Nutrients and Interpretation and Uses of DRIs, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: National Academy of Sciences, 2000

  17. Yusuf S, Dagenais G, Pogue J, et al., The Heart Outcomes Prevention Evaluation Study Investigators. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med 2000 Jan 20; 342(3): 154–60

    Article  PubMed  CAS  Google Scholar 

  18. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360: 23–33

    Article  Google Scholar 

  19. Roberts AB, McCune BK, Dunn SR. TGF-b: regulation of extracellular matrix. Kidney Int 1992; 41: 557–9

    Article  PubMed  CAS  Google Scholar 

  20. Gong D, Lu J, Chen X, et al. Molecular changes evoked by triethylenetetramine treatment in the extracellular matrix of the heart and aorta in diabetic rats. Mol Pharmacol 2006 Dec; 70(6): 2045–51

    Article  PubMed  CAS  Google Scholar 

  21. Pohlers D, Brenmoehl J, Loffler I, et al. TGF-beta and fibrosis in different organs-molecular pathway imprints. Biochim Biophys Acta 2009 Aug; 1792(8): 746–56

    Article  PubMed  CAS  Google Scholar 

  22. Roth M. “Glycated hemoglobin,” not “glycosylated” or “glucosylated” [letter]. Clin Chem 1983 Nov; 29(11): 1991

    PubMed  CAS  Google Scholar 

  23. Ahmed MU, Thorpe SR, Baynes JW. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem 1986 Apr 15; 261(11): 4889–94

    PubMed  CAS  Google Scholar 

  24. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation and pathogenesis of diabetes complications. Ann Intern Med 1984; 101: 527–37

    Article  PubMed  CAS  Google Scholar 

  25. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988 May 19; 318(20): 1315–21

    Article  PubMed  CAS  Google Scholar 

  26. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999 Jan; 48(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  27. Monnier VM, Sell DR. Prevention and repair of protein damage by the Maillard reaction in vivo. Rejuvenation Res 2006; 9(2): 264–73

    Article  PubMed  CAS  Google Scholar 

  28. Smith MA, Taneda S, Richey PL, et al. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci U S A 1994; 91: 5710–4

    Article  PubMed  CAS  Google Scholar 

  29. Sasaki N, Fukatsu R, Tsuzuki K, et al. Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J Pathol 1998 Oct; 153(4): 1149–55

    Article  PubMed  CAS  Google Scholar 

  30. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N-epsilon-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 1997; 99(3): 457–68

    Article  PubMed  CAS  Google Scholar 

  31. Qian M, Liu M, Eaton JW. Transition metals bind to glycated proteins forming redox active “glycochelates”: implications for the pathogenesis of certain diabetic complications. Biochem Biophys Res Commun 1998 Sep 18; 250(2): 385–9

    Article  PubMed  CAS  Google Scholar 

  32. Saxena AK, Saxena P, Wu X, et al. Protein aging by carboxymethylation of lysines generates sites for divalent metal and redox active copper binding: relevance to diseases of glycoxidative stress. Biochem Biophys Res Commun 1999 Jul 5; 260(2): 332–8

    Article  PubMed  CAS  Google Scholar 

  33. Qian M, Eaton JW. Glycochelates and the etiology of diabetic peripheral neuropathy. Free Radic Biol Med 2000; 28: 652–6

    Article  PubMed  CAS  Google Scholar 

  34. Eaton JW, Qian M. Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy. Mol Cell Biochem 2002 May–Jun; 234-5(1–2): 135–42

    Article  Google Scholar 

  35. Hamada Y, Nakashima E, Naruse K, et al. A copper chelating agent suppresses carbonyl stress in diabetic rat lenses. J Diabetes Complications 2005 Nov–Dec; 19(6): 328–34

    Article  PubMed  Google Scholar 

  36. Seifert ST, Krause R, Gloe K, et al. Metal complexation by the peptide-bound Maillard reaction products N-e-fructoselysine and N-e-carboxymethyllysine. J Ag Food Chem 2004; 52: 2347–50

    Article  CAS  Google Scholar 

  37. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000 Apr 13; 404(6779): 787–90

    Article  PubMed  CAS  Google Scholar 

  38. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 Dec 13; 414(6865): 813–20

    Article  PubMed  CAS  Google Scholar 

  39. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005 Jun; 54(6): 1615–25

    Article  PubMed  CAS  Google Scholar 

  40. Semba RD, Beck J, Sun K, et al. Relationship of a dominant advanced glycation end product, serum carboxymethyl-lysine, and abnormal glucose metabolism in adults: the Baltimore Longitudinal Study of Aging. J Nutr Health Aging 2010; 14(7): 507–13

    Article  PubMed  CAS  Google Scholar 

  41. Kadiiska MB, Hanna PM, Hernandez L, et al. In vivo evidence of hydroxyl radical formation after acute copper and ascorbic acid intake: electron spin resonance spintrapping investigation. Mol Pharmacol 1992; 42: 723–9

    PubMed  CAS  Google Scholar 

  42. Cooper GJS, Phillips ARJ, Choong SY, et al. Regeneration of the heart in diabetes by selective copper chelation. Diabetes 2004 Sep; 53(9): 2501–8

    Article  PubMed  CAS  Google Scholar 

  43. Cooper GJ, Young AA, Gamble GD, et al. A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study. Diabetologia 2009 Apr; 52(4): 715–22

    Article  PubMed  CAS  Google Scholar 

  44. Fraústo da Silva JJ, Williams RJ. The biological chemistry of the elements: the inorganic chemistry of life. 2nd ed. Oxford: Clarendon Press, 2001: 418–35

    Google Scholar 

  45. Cooper GJS, Chan YK, Dissanayake AM, et al. Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation: quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes 2005 May; 54(5): 1468–76

    Article  PubMed  CAS  Google Scholar 

  46. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366: 2112–7

    Article  PubMed  Google Scholar 

  47. Launer LJ. Demonstrating the case that AD is a vascular disease: epidemiologic evidence. Ageing Res Rev 2002; 1: 61–77

    Article  PubMed  Google Scholar 

  48. Luchsinger JA, Tang MX, Stern Y, et al. Diabetes mellitus and risk of Alzheimer’s disease and dementia with stroke in a multiethnic cohort. Am J Epidemiol 2001 Oct 1; 154(7): 635–41

    Article  PubMed  CAS  Google Scholar 

  49. Skoog I. Status of risk factors for vascular dementia. Neuroepidemiology 1998; 17(1): 2–9

    Article  PubMed  CAS  Google Scholar 

  50. Skoog I, Kalaria RN, Breteler MMB. Vascular factors and Alzheimer disease. Alzheimer Dis Assoc Disord 1999; 13: S106–S14

    Article  PubMed  Google Scholar 

  51. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med 2000 Feb 10; 342(6): 381–9

    Article  Google Scholar 

  52. DCCT/EDIC Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. J Am Med Assoc 2002; 287: 2563–9

    Article  Google Scholar 

  53. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353(25): 2643–53

    Article  Google Scholar 

  54. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998 Sep 12; 352(9131): 837–53

    Article  Google Scholar 

  55. Oresic M, Simell S, Sysi-Aho M, et al. Dysregulation of lipid and amino acid metabolism precedes islet auto-immunity in children who later progress to type 1 diabetes. J Exp Med 2008; 205(13): 2975–84

    Article  PubMed  CAS  Google Scholar 

  56. Duckworth W, Abraira C, Moritz T. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360(2): 129–39

    Article  PubMed  CAS  Google Scholar 

  57. Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008 Jun 12; 358(24): 2545–59

    Article  PubMed  CAS  Google Scholar 

  58. Holman RR, Paul SK, Bethel MA, et al. Ten-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 358: 1577–89

    Article  Google Scholar 

  59. Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008 Jun 12; 358(24): 2560–72

    Article  PubMed  CAS  Google Scholar 

  60. Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358: 580–91

    Article  PubMed  CAS  Google Scholar 

  61. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. J Am Med Assoc 2007; 298: 902–16

    Article  CAS  Google Scholar 

  62. The ACCORD Study Group, Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362(17): 1563–74

    Article  Google Scholar 

  63. Rosca MG, Mustata TG, Kinter MT, et al. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol 2005 Aug; 289(2): F420–30

    Article  PubMed  CAS  Google Scholar 

  64. Lu J, Gong D, Choong SY, et al. Copper(II)-selective chelation improves function and antioxidant defences in cardiovascular tissues of rats as a model of diabetes: comparisons between triethylenetetramine and three less copper-selective transition-metal-targeted treatments. Diabetologia 2010 Jun; 53(6): 1217–26

    Article  PubMed  CAS  Google Scholar 

  65. Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996; 13: 399–408

    Article  PubMed  CAS  Google Scholar 

  66. Buja LM, Roberts WC. Iron in the heart: etiology and clinical significance. Am J Med Genet 1971; 51: 209–21

    CAS  Google Scholar 

  67. Telfer PT, Prestcott E, Holden S, et al. Hepatic iron concentration combined with long-term monitoring of serum ferritin to predict complications of iron overload in thalassaemia major. Br J Haematol 2002; 110: 971–7

    Article  Google Scholar 

  68. Gong D, Lu J, Chen X, et al. A copper(II)-selective chelator ameliorates diabetes-evoked renal fibrosis and albuminuria, and suppresses pathogenic TGF-beta activation in the kidneys of rats used as a model of diabetes. Diabetologia 2008 Sep; 51(9): 1741–51

    Article  PubMed  CAS  Google Scholar 

  69. Cameron NE, Cotter MA. Effects of an extracellular metal chelator on neurovascular function in diabetic rats. Diabetologia 2001 May; 44(5): 621–8

    Article  PubMed  CAS  Google Scholar 

  70. Cameron NE, Cotter MA. Neurovascular dysfunction in diabetic rats: potential contribution of autoxidation and free radicals examined using transition metal chelating agents. J Clin Invest 1995 Aug; 96(2): 1159–63

    Article  PubMed  CAS  Google Scholar 

  71. Inkster ME, Cotter MA, Cameron NE. Effects of trientine, a metal chelator, on defective endothelium-dependent relaxation in the mesenteric vasculature of diabetic rats. Free Radic Res 2002 Oct; 36(10): 1091–9

    Article  PubMed  CAS  Google Scholar 

  72. Keegan A, Cotter MA, Cameron NE. Effects of chelator treatment on aorta and corpus cavernosum from diabetic rats. Free Radic Biol Med 1999 Sep; 27(5–6): 536–43

    Article  PubMed  CAS  Google Scholar 

  73. Olivieri NF, Brittenham GM, McLaren CE, et al. Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major. N Engl J Med 1998; 339: 417–23

    Article  PubMed  CAS  Google Scholar 

  74. Dahlman T, Hartvig P, Lofholm M, et al. Long-term treatment of Wilson’s disease with triethylene tetramine dihydrochloride (trientine). Q J Med 1995; 88: 609–16

    CAS  Google Scholar 

  75. Kopp SJ, Klevay LM, Feliksik JM. Physiological and metabolic characterization of a cardiomyopathy induced by chronic copper deficiency. Am J Physiol Heart Circ Physiol 1983; 245: H855–66

    CAS  Google Scholar 

  76. Saari JT. Copper deficiency and cardiovascular disease: role of peroxidation, glycation, and nitration. Can J Physiol Pharmacol 2000 Oct; 78(10): 848–55

    Article  PubMed  CAS  Google Scholar 

  77. Saari JT, Schuschke DA. Cardiovascular effects of dietary copper deficiency. Biofactors 1999; 10: 359–75

    Article  PubMed  CAS  Google Scholar 

  78. Jaksch M, Horvath R, Horn N, et al. Homozygosity (E140K) in SCO2 causes delayed infantile onset of cardiomyopathy and neuropathy. Neurol 2001; 57: 1440–6

    Article  CAS  Google Scholar 

  79. Jaksch M, Ogilvie I, Yao J, et al. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome C oxidase deficiency. Hum Mol Genet 2000; 9: 795–801

    Article  PubMed  CAS  Google Scholar 

  80. Jaksch M, Paret C, Stucka R, et al. Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts. Hum Mol Genet 2001; 10: 3025–35

    Article  PubMed  CAS  Google Scholar 

  81. Ferns GA, Lamb DJ, Taylor A. The possible role of copper ions in atherogenesis: the Blue Janus. Atheroscler 1997; 133: 139–52

    Article  CAS  Google Scholar 

  82. Culotta VC, Gitlin JD. Disorders of copper transport. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill, 2001: 3105–26

    Google Scholar 

  83. Harris ED. Basic and clinical aspects of copper. Crit Rev Clin Lab Sci 2003 Oct; 40(5): 547–86

    PubMed  CAS  Google Scholar 

  84. Finney LA, O’Halloran TV. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 2003; 300: 931–6

    Article  PubMed  CAS  Google Scholar 

  85. Huffman DL, O’Halloran TV. Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 2001; 70: 677–701

    Article  PubMed  CAS  Google Scholar 

  86. Linder MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr 1996; 63 Suppl.: 797–811S

    Google Scholar 

  87. Peña MM, Lee J, Thiele DJ. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 1999; 129: 1251–60

    PubMed  Google Scholar 

  88. Rae TD, Schmidt PJ, Pufahl RA, et al. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 1999; 284: 805–8

    Article  PubMed  CAS  Google Scholar 

  89. Iskandar M, Swist E, Trick KD, et al. Copper chaperone for Cu/Zn superoxide dismutase is a sensitive biomarker of mild copper deficiency induced by moderately high intakes of zinc. Nutr J 2005; 4: 35

    Article  PubMed  CAS  Google Scholar 

  90. Wang J, Song Y, Elsherif L, et al. Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 2006 Jan 31; 113(4): 544–54

    Article  PubMed  CAS  Google Scholar 

  91. Lutsenko S, Barnes NL, Bartree ME, et al. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87: 1011–46

    Article  PubMed  CAS  Google Scholar 

  92. Tanzi RE, Petrukhin K, Chernov I, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menke’s disease gene. Nat Genet 1993; 5: 344–50

    Article  PubMed  CAS  Google Scholar 

  93. Dameron CT, Harrison MD. Mechanisms for protection against copper toxicity. Am J Clin Nutr 1998; 67 Suppl.: 1091S–7S

    PubMed  CAS  Google Scholar 

  94. Turnlund JR, Keyes WR, Anderson HL, et al. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr 1989; 1989: 870–8

    Google Scholar 

  95. Turnlund JR, Jacob RA, Keen CL, et al. Long-term high copper intake: effects on indexes of copper status, anti-oxidant status, and immune function in young men. Am J Clin Nutr 2004; 79(6): 1037–44

    PubMed  CAS  Google Scholar 

  96. Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Use of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy of Sciences, 2001

    Google Scholar 

  97. Turnlund JR, Keyes WR, Peiffer GL, et al. Copper absorption, excretion and retention by young men consuming low dietary copper, determined by using the stable isotope 65Cu. Am J Clin Nutr 1998; 67: 1219–25

    PubMed  CAS  Google Scholar 

  98. Moriya M, Ho YH, Grana A, et al. Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol 2008 Sep; 295(3): C708–21

    Article  PubMed  CAS  Google Scholar 

  99. Liu N, Lo LS, Askary SH, et al. Transcuprein is a macroglobulin regulated by copper and iron availability. J Nutr Biochem 2007 Sep; 18(9): 597–608

    Article  PubMed  CAS  Google Scholar 

  100. Linder MC. Biochemistry of copper. New York: Plenum, 1991

    Google Scholar 

  101. Linder MC, Wooten L, Cerveza P, et al. Copper transport. Am J Clin Nutr 1998 May; 67: (5 Suppl.): 965–71S

    Google Scholar 

  102. Zaitseva I, Zaitsev V, Cara G, et al. The x-ray structure of human ceruloplasmin at 3.1 D resolution: nature of the copper centers. J Biol Inorgan Chem 1996; 1: 15–23

    Article  CAS  Google Scholar 

  103. Gitlin JD. Aceruloplasminemia. Pediatr Res 1998; 44(3): 271–6

    Article  PubMed  CAS  Google Scholar 

  104. Hellman NE, Schaefer M, Gehrke S, et al. Hepatic iron overload in aceruloplasminaemia. Gut 2000; 47(6): 858–60

    Article  PubMed  CAS  Google Scholar 

  105. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr 2002; 22: 439–58

    Article  PubMed  CAS  Google Scholar 

  106. Nittis T, Gitlin JD. The copper-iron connection: hereditary aceruloplasminemia. Semin Hematol 2002; 39: 282–9

    Article  PubMed  CAS  Google Scholar 

  107. Turnlund JR. Copper. In: Shils ME, Olson JA, Shike M, et al., editors. Modern nutrition in health and disease. 9th ed. Baltimore (MD): Williams and Wilkins, 1998: 241–52

    Google Scholar 

  108. Cordano A. Clinical manifestations of nutritional copper deficiency in infants and children. Am J Clin Nutr 1998; 67 (5 Suppl.): 1012–6S

    Google Scholar 

  109. Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Use of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy of Sciences, 2002: 224–57

    Google Scholar 

  110. Bennetts HW, Beck AB. Enzootic ataxia and copper deficiency of sheep in Western Australia. Aust Commonwealth Sci Ind Res Bull 1942; 147: 1–52

    Google Scholar 

  111. Innes JRM. Swayback: a demyelinating disease of lambs with affinities to Schilder’s encephalitis and its prevention by copper. J Neurol Psychiatr 1939; 147: 323–34

    Article  Google Scholar 

  112. Elsherif L, Wang L, Saari JT, et al. Regression of dietary copper restriction-induced cardiomyopathy by copper repletion in mice. J Nutr 2004; 134: 855–60

    PubMed  CAS  Google Scholar 

  113. Zidar BL, Saddrich RK, Zeigher Z, et al. Observations on the anemia and neutropenia of human copper deficiency. Am J Hematol 1977; 3: 177–85

    Article  PubMed  CAS  Google Scholar 

  114. Dawson R, Milne G, Williams A. Changes in the collagen of rat heart in copper-deficiency-induced cardiac hypertrophy. Cardiovasc Res 1982; 16: 559–65

    Article  PubMed  CAS  Google Scholar 

  115. Hill KE, Davidson JM. Induction of increased collagen and elastin biosynthesis in copper-deficient pig aorta. Atheroscler 1986; 6: 98–104

    Article  CAS  Google Scholar 

  116. Hawk SN, Uriu-Hare JY, Daston GP, et al. Rat embryos cultured under copper-deficient conditions develop abnormally and are characterized by an impaired oxidant defense system. Teratology 1998; 57: 310–20

    Article  PubMed  CAS  Google Scholar 

  117. Yang SL, Keen CL, Lanoue L, et al. Low nitric oxide: a key factor underlying copper deficiency teratogenicity. Free Radic Biol Med 2007; 43: 1639–48

    Article  PubMed  CAS  Google Scholar 

  118. Yamamoto M, Aklyama C, Alkawa H. D-Penicillamine-induced copper deficiency in suckling mice: neurological abnormalities and brain mitochondrial enzyme activities. Dev Brain Res 1990; 55: 51–5

    Article  CAS  Google Scholar 

  119. Bennetts HW, Chapman FE. Copper deficiency in sheep in Western Australia: a preliminary account of the etiology of enzootic ataxia of lambs and an anaemia of ewes. Aust Vet J 1937; 13: 138–49

    Article  CAS  Google Scholar 

  120. Roberts HE, Williams BM, Harvard A. Cerebral oedema in lambs associated with hypocuprosis, and its relationship to swayback: I. Field, clinical, gross anatomical and biochemical observations. J Comp Pathol 1966; 76: 279–83

    Article  PubMed  CAS  Google Scholar 

  121. Chalmers GA. Swayback (enzootic ataxia) in Alberta lambs. Can J Comp Pathol 1974; 38: 111–7

    CAS  Google Scholar 

  122. Percival SS. Neutropenia caused by copper deficiency. Nutr Rev 1995; 53: 59–66

    Article  PubMed  CAS  Google Scholar 

  123. Lewis G, Terlecki S, Allcroft R. The occurrence of swayback in the lambs of ewes fed a semipurified diet of low copper content. Vet Rec 1967; 81: 415–6

    Google Scholar 

  124. Mills CF, Fell BF. Demyelination in lambs born of ewes maintained on high intakes of sulphate and molybdate. Nature 1960; 185: 20–2

    Article  PubMed  CAS  Google Scholar 

  125. Frank A, Danielsson R, Jones B. Experimental copper and chromium deficiency and additional molybdenum supplementation in goats: II. Concentrations of trace and minor elements in liver, kidneys and ribs: haematology and clinically chemistry. Sci Total Environ 2000; 249: 143–70

    Article  PubMed  CAS  Google Scholar 

  126. Flynn AA, Franzman AW, Arneson PD, et al. Indications of copper deficiency in a subpopulation of Alaska moose. JNutr 1977; 107: 1182–9

    CAS  Google Scholar 

  127. Frank A, Sell DR, Danielsson R, et al. A syndrome of molybdenosis, copper deficiency, and type 2 diabetes in the moose population of south-west Sweden. Sci Total Environ 2000 Apr 17; 249(1–3): 123–31

    Article  PubMed  CAS  Google Scholar 

  128. Gogan PJP, Jessup DA, Akeson M. Copper deficiency in tule elk at Point Reyes, California. J Range Management 1989; 42: 233–8

    Article  Google Scholar 

  129. Wildman RE, Medeiros DM, Hamlin RL, et al. Aspects of cardiomyopathy in copper-deficient pigs: electrocardiography, echocardiography, and ultrastructural findings. Biol Trace Elem Res 1996; 55: 55–70

    Article  PubMed  CAS  Google Scholar 

  130. Coulson WF, Carnes WWH. Cardiovascular studies on copper-deficient swine: XIII. The effect of chronic copper deficiency on the cardiovascular system of miniature pigs. Lab Invest 1962; 11: 1316–21

    PubMed  CAS  Google Scholar 

  131. Weissman N, Shields G, Carnes W. Cardiovascular studies on copper-deficient swine: IV. Content and solubility of the aortic elastin, collagen and hexosamine. J Biol Chem 1963; 238: 3115–8

    PubMed  CAS  Google Scholar 

  132. Linker A, Coulson W, Carnes W. Cardiovascular studies on copper-deficient swine: VI. The mucopolysaccharide composition of aorta and cartilage. J Biol Chem 1964; 239: 1690–3

    PubMed  CAS  Google Scholar 

  133. Viestenz KE, Klevay LM. A randomized trial of copper therapy in rats with electrocardiographic abnormalities due to copper deficiency. Am J Clin Nutr 1982; 35: 258–66

    PubMed  CAS  Google Scholar 

  134. Owen CAJ, Hazelrig JR. Copper deficiency and copper toxicity in the rat. Am J Physiol 1968; 215: 334–8

    PubMed  CAS  Google Scholar 

  135. Mao S, Medeiros DM, Wildman RE. Cardiac hypertrophy in copper-deficient rats is owing to increased mitochondria. Biol Trace Elem Res 1998; 64(1–3): 175–84

    Article  PubMed  CAS  Google Scholar 

  136. Kang YJ, Zhou ZX, Wu H, et al. Metallothionein inhibits myocardial apoptosis in copper-deficient mice: role of atrial natriuretic peptide. Lab Invest 2000 May; 80(5): 745–57

    Article  PubMed  CAS  Google Scholar 

  137. Klevay LM. Atrial thrombosis, abnormal electrocardiograms and sudden death in mice due to copper deficiency. Atherosclerosis 1985; 54: 213–24

    Article  PubMed  CAS  Google Scholar 

  138. Song Y, Wang J, Li Y, et al. Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am J Pathol 2005 Jul; 167(1): 17–26

    Article  PubMed  CAS  Google Scholar 

  139. Kang YJ, Wu H, Saari JT. Alterations in hypertrophic gene expression by dietary copper restriction in mouse heart. Proc Soc Exp Biol Med 2000; 223: 282–7

    Article  PubMed  CAS  Google Scholar 

  140. Tapia L, González-Aqüero M, Cisternas MF, et al. Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 2004; 378 (Pt 2): 617–24

    Article  PubMed  CAS  Google Scholar 

  141. Saari JT, Dahlen GM. Nitric oxide and cyclic GMP are elevated in the hearts of copper-deficient rats. Med Sci Res 1998; 26: 495–7

    CAS  Google Scholar 

  142. Cartwright GE, Wintrobe MM. The question of copper deficiency in man. Am J Clin Nutr 1964; 94–110

  143. Danks DM. Copper deficiency in humans. Annu Rev Nutr 1988; 8: 235–57

    Article  PubMed  CAS  Google Scholar 

  144. _Danks DM. Disorders of copper transport. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989: 1411–31

    Google Scholar 

  145. Heller RM, Kirchner SG, O’Neill JA, et al. Skeletal changes of copper deficiency in infants receiving prolonged total parenteral nutrition. J Pediatr 1978; 92(6): 947–9

    Article  PubMed  CAS  Google Scholar 

  146. Karpel JT, Peden VH. Copper deficiency in long-term parenteral nutrition. J Pediatr 1972; 80(1): 32–6

    Article  PubMed  CAS  Google Scholar 

  147. Sutton AM, Harvie A, Cockburn F, et al. Copper deficiency in the preterm infant of very low birthweight: four cases and a reference range for plasma copper. Arch Dis Child 1985; 60: 644–51

    Article  PubMed  CAS  Google Scholar 

  148. Graham GC, Cordano A. Copper depletion and deficiency in the malnourished infant. Johns Hopkins Med J 1969; 124: 39–50

    Google Scholar 

  149. Cordano A, Graham GG. Copper deficiency complicating severe chronic malabsorption. Pediatr 1966; 38: 596–604

    CAS  Google Scholar 

  150. Graham GG, Cordano A. Copper depletion and deficiency in the malnourished infant. Johns Hopkins Med J 1969; 124: 139–50

    PubMed  CAS  Google Scholar 

  151. Josephs HW. Treatment of anemia in infants with iron and copper. Bull Johns Hopkins Hosp 1931; 49: 246–54

    Google Scholar 

  152. Peltonen L, Kuivaniem H, Palotie A, et al. Alterations of copper and collagen metabolism in the Menkes syndrome and a new subtype of Ehlers-Danlos Syndrome. Biochemistry 1983; 22: 6156–63

    Article  PubMed  CAS  Google Scholar 

  153. Turnlund JR. Copper status and metabolism studied with isotopic tracers. In: Lowe N, Jackson M, editors. Advances in isotope methods for the analysis of trace elements in man. Boca Raton (FL): CRC Press, 2001: 117–27

    Google Scholar 

  154. Mason KE. A conspectus of research on copper metabolism and requirements of man. J Nutr 1979; 109: 1979–2066

    PubMed  CAS  Google Scholar 

  155. Mertz W. The use and misuse of balance studies. J Nutr 1987; 117: 1811–3

    PubMed  CAS  Google Scholar 

  156. Turnlund JR, Scott KC, Peiffer GL, et al. Copper status of young men consuming a low copper diet. Am J Clin Nutr 1997; 65: 72–8

    PubMed  CAS  Google Scholar 

  157. Bremner I. Manifestations of copper excess. Am J Clin Nutr 1998; 67 Suppl.: 1069–73S

    Google Scholar 

  158. Sriramachari S, Nayak NC. Indian childhood cirrhosis: several dilemmas resolved. Indian J Med Res 2008; 128: 93–6

    PubMed  CAS  Google Scholar 

  159. Muller T, Muller W, Feichtinger H. Idiopathic copper toxicosis. Am J Clin Nutr 1998; 67 Suppl.: 1082–6S

    Google Scholar 

  160. Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Aspects Med 2005 Aug–Oct; 26(4–5): 268–98

    Article  PubMed  CAS  Google Scholar 

  161. Turnlund JR, Keyes WR, Kim SK, et al. Long-term high copper intake: effects on copper absorption, retention, and homeostasis in men. Am J Clin Nutr 2005; 81: 822–8

    PubMed  CAS  Google Scholar 

  162. Turnlund JR, Domek JM, Nair PP, et al. Copper retention in intestinal musosal cells of young men at normal and high copper intakes. J Trace Elem Exp Med 2003; 16: 105–8

    Article  CAS  Google Scholar 

  163. Tanner MS. The role of copper in Indian childhood cirrhosis. Am J Clin Nutr 1998; 67 Suppl.: 1074–81S

    Google Scholar 

  164. Wijmenga C, Müller T, Murli IS, et al. Endemic Tyrolean infantile cirrhosis is not an allelic variant of Wilson’s disease. Eur J Hum Genet 1998; 6: 624–8

    Article  PubMed  CAS  Google Scholar 

  165. Muller T, Feichtinger H, Berger H, et al. Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder. Lancet 1996; 347: 877–80

    Article  PubMed  CAS  Google Scholar 

  166. Yuzbasiyan-Gurkan V, Grider A, Nostrant T, et al. Treatment of Wilson’s disease with zinc: X. Intestinal metallothionein induction. J Lab Clin Med 1992 Sep; 120(3): 380–6

    PubMed  CAS  Google Scholar 

  167. Brewer GJ. Zinc acetate for the treatment of Wilson’s disease. Exp Opin Pharmacotherap 2001; 2: 1473–7

    Article  CAS  Google Scholar 

  168. Allen MM, Harding JDJ. Experimental copper poisoning in pigs. Vet Rec 1962; 74: 173–9

    CAS  Google Scholar 

  169. Fuentealba IC, Aburto EM. Animal models of copper-associated liver disease. Comp Hepatol 2003; 2: 5

    Article  PubMed  Google Scholar 

  170. Fuentealba I, Haywood S, Foster J. Cellular mechanisms of toxicity and tolerance in the copper-loaded rat: II. Pathogenesis of copper toxicity in the liver. Exp Mol Pathol 1989; 50: 26–37

    Article  PubMed  CAS  Google Scholar 

  171. Fuentealba IC, Davis RW, Elmes ME, et al. Mechanisms of tolerance in the copper-loaded rat liver. Exp Mol Pathol 1993; 59: 71–84

    Article  PubMed  CAS  Google Scholar 

  172. Ishmael J, Gopinath C, Howell JM. Experimental chronic copper toxicity in sheep: biochemical and haematological studies during the development of changes in the liver. Res Vet Sci 1972; 13: 22–9

    PubMed  CAS  Google Scholar 

  173. Ishmael J, Gopinath C, Howell J. Experimental chronic copper toxicity in sheep: histological and histochemical changes during development of the changes in the liver. Res Vet Sci 1971; 12: 358–66

    PubMed  CAS  Google Scholar 

  174. Peña MM, Koch KA, Thiele DJ. Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18: 2514–23

    PubMed  Google Scholar 

  175. Furst P, Hu S, Hackett R, et al. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 1988 Nov 18; 55(4): 705–17

    Article  PubMed  CAS  Google Scholar 

  176. Gralla EB, Thiele DJ, Silar P, et al. ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci USA 1991; 88: 8558–62

    Article  PubMed  CAS  Google Scholar 

  177. Shinyashiki M, Chiang KT, Switzer CH, et al. The interaction of nitric oxide (NO) with the yeast transcription factor Ace1: a model system for NO-protein thiol interactions with implications to metal metabolism. Proc Natl Acad Sci U S A 2000; 97(6): 2491–6

    Article  PubMed  CAS  Google Scholar 

  178. Georgatsou E, Mavrogiannis LA, Fragiadakis GS, et al. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 1997; 272: 13786–92

    Article  PubMed  CAS  Google Scholar 

  179. Gross C, Kelleher M, Iyer VR, et al. Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 2000; 275(41): 32310–6

    Article  PubMed  CAS  Google Scholar 

  180. Dameron CT, Harris ED. Regulation of aortic CuZn-superoxide dismutase with copper: caeruloplasmin and albumin re-activate and transfer copper to the enzyme in culture. Biochem J 1987; 248: 669–75

    PubMed  CAS  Google Scholar 

  181. Dameron CT, Harris ED. Regulation of aortic CuZn-superoxide dismutase with copper: effects in vivo. Biochem J 1987; 248: 663–8

    PubMed  CAS  Google Scholar 

  182. Thomas GR, Forbes JR, Roberts EA, et al. The Wilson disease gene: the spectrum of mutations and their consequences. Nat Genet 1995; 210–7

  183. Krajacic P, Qian Y, Hahn P, et al. Retinal localization and copper-dependent relocalization of the Wilson and Menkes disease proteins. Invest Ophthalmol Vis Sci 2006 Jul; 47(7): 3129–34

    Article  PubMed  Google Scholar 

  184. Kuan P. Cardiac Wilson’s disease. Chest 1987; 91: 579–83

    Article  PubMed  CAS  Google Scholar 

  185. Walshe JM. Copper chelation in patients with Wilson’s disease: a comparison of penicillamine and triethylene tetramine dihydrochloride. Q J Med 1973; 42: 441–52

    PubMed  CAS  Google Scholar 

  186. Brewer GJ. Raulin Award Lecture: Wilson’s disease therapy with zinc and tetrathiomolybdate. J Trace Elem Exp Med 2000; 13: 51–61

    Article  CAS  Google Scholar 

  187. Walshe JM. Treatment of Wilson’s disease with trientine (triethylene tetramine) dihydrochloride. Lancet 1982 Mar 20; 1(8273): 643–7

    Article  PubMed  CAS  Google Scholar 

  188. Siegemund R, Löβner J, Günther K, et al. Mode of action of triethylenetetramine dihydrochloride on copper metabolism in Wilson’s disease. Acta Neurol Scand 1991; 83: 364–6

    Article  PubMed  CAS  Google Scholar 

  189. Morita J, Yoshino M, Watari H, et al. Wilson’s disease treatment by triethylene tetramine dihydrochloride (trientine, 2HCl): long-term observation. Dev Pharmacol Therap 1992; 19: 6–9

    CAS  Google Scholar 

  190. Kodama H, Murata Y, Iitsuka T, et al. Metabolism of administered triethylene tetramine dihydrochloride in humans. Life Sci 1997; 61: 899–907

    Article  PubMed  CAS  Google Scholar 

  191. Condamine L, Hermine O, Alvin P, et al. Acquired side-roblastic anaemia during treatment of Wilson’s disease with triethylene tetramine dihydrochloride. Br J Haematol 1993; 83: 166–8

    Article  PubMed  CAS  Google Scholar 

  192. Joyce DA. D-penicillamine. Baillières Clin Rheumatol 1990; 4: 553–74

    Article  PubMed  CAS  Google Scholar 

  193. Keen CL, Mark-Savage P, Lonnerdal B, et al. Teratogenesis and low copper status resulting from D-penicillamine in rats. Teratology 1982; 26: 163–5

    Article  PubMed  CAS  Google Scholar 

  194. Frank A. ‘Mysterious’ moose disease in Sweden: similarities to copper deficiency and/or molybdenosis in cattle and sheep. Biochemical background of clinical signs and organ lesions. Sci Tot Environ 1998; 209(1): 17–26

    Article  CAS  Google Scholar 

  195. Frank A, Danielsson R, Jones B. The ‘mysterious’ disease in Swedish moose: concentrations of trace elements in liver and kidneys and clinical chemistry. Comparisons with experimental molybdenosis and copper deficiency in the goat. Sci Total Environ 2000; 249: 107–22

    CAS  Google Scholar 

  196. Gibbs KR, Walshe LM. Orphan diseases and orphan drugs. In: Scheinberg IH, Walshe JM, editors. Orphan diseases and orphan drugs. Manchester: Manchester University Press, 1986: 33–42

  197. Cho HY, Blum RA, Sunderland T, et al. Pharmacokinetic and pharmacodynamic modeling of a copper-selective chelator (TETA) in healthy adults. J Clin Pharmacol 2009 Aug; 49(8): 916–28

    Article  PubMed  CAS  Google Scholar 

  198. Wichmann KA, Boyd PDW, Söhnel T, et al. Characterization of dicarboxylic salts of protonated triethylenetetramine useful for the treatment of copper-related pathologies. Crystal Growth Design 2007; 7: 1844–50

    Article  CAS  Google Scholar 

  199. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41

    Article  PubMed  CAS  Google Scholar 

  200. Jüllig M, Hickey AJ, Crossman DJ, et al. Reversal of diabetes-evoked changes in mitochondrial protein expression of cardiac left ventricle by treatment with a copper(II)-selectivechelator. Proteomics Clin Appl 2007; 1(4): 387–99

    Article  PubMed  CAS  Google Scholar 

  201. Gong D, Chen X, Middleditch M, et al. Quantitative proteomic profiling identifies new renal targets of copper(II)-selective chelation in the reversal of diabetic nephropathy in rats. Proteomics 2009 Sep; 9(18): 4309–20

    Article  PubMed  CAS  Google Scholar 

  202. Lu J, Poppitt SD, Othman AA, et al. Pharmacokinetics, pharmacodynamics, and metabolism of triethylenetetramine in healthy human participants: an open-label trial. J Clin Pharmacol 2010 Feb 9; 50(6): 647–58

    Article  PubMed  CAS  Google Scholar 

  203. Othman A, Lu J, Sunderland T, et al. Development and validation of a rapid HPLC method for the simultaneous determination of triethylenetetramine and its two main metabolites in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2007 Dec 1; 860(1): 42–8

    Article  PubMed  CAS  Google Scholar 

  204. Lu J, Chan YK, Gamble GD, et al. Triethylenetetramine and metabolites: levels in relation to copper and zinc excretion in urine of healthy volunteers and type 2 diabetic patients. Drug Metab Dispos 2007 Feb; 35(2): 221–7

    Article  PubMed  CAS  Google Scholar 

  205. Lu J, Chan YK, Poppitt SD, et al. Determination of triethylenetetramine (TETA) and its metabolites in human plasma and urine by liquid chromatography-mass spectrometry (LC-MS). J Chromatogr B Analyt Technol Biomed Life Sci 2007 Nov 1; 859(1): 62–8

    Article  PubMed  CAS  Google Scholar 

  206. Persson L. Polyamine homoeostasis. Essays Biochem 2009; 46: 11–24

    Article  PubMed  CAS  Google Scholar 

  207. Pegg AE. Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 2008; 294: E995–1010

    Article  PubMed  CAS  Google Scholar 

  208. Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006 Nov; 27(21): 2588–605

    Article  PubMed  Google Scholar 

  209. Cruickshank K, Riste L, Anderson SG, et al. Aortic pulsewave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 2002; 106: 2085–90

    Article  PubMed  Google Scholar 

  210. Jüllig M, Chen X, Vazhoor G, et al. Illuminating the molecular basis of diabetic arteriopathy: a proteomic comparison of aortic tissue from diabetic and healthy rats. Proteomics 2010; 10: 1–10

    Article  CAS  Google Scholar 

  211. Jüllig M, Hickey AJ, Middleditch MJ, et al. Characterization of proteomic changes in cardiac mitochondria in streptozotocin diabetic rats using iTRAQ™ isobaric tags. Proteomics Clin Appl 2007; 1: 565–76

    Article  PubMed  CAS  Google Scholar 

  212. Siddiqui S, Shepherd RE. Electron spin resonance studies of copper(II) polyamine and imidazole complexes. Inorg Chem 1986; 25(22): 3869–76

    Article  CAS  Google Scholar 

  213. Baynes JW, Murray DB. The metal chelators, trientine and citrate, inhibit the development of cardiac pathology in the Zucker diabetic rat. Exp Diabetes Res. Epub 2009 Apr 15

  214. Susztak K, Raff AC, Schiffer M, et al. Glucose induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 2006; 55: 225–33

    Article  PubMed  CAS  Google Scholar 

  215. Vidotti DB, Arnoni CP, Maquigussa E, et al. Effect of long-term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol 2008; 28: 107–14

    Article  PubMed  Google Scholar 

  216. Verman AS. Roles of aquaporins in kidney revealed by transgenic mice. Semin Nephrol 2006; 26: 200–8

    Article  CAS  Google Scholar 

  217. Hryciw DH, Lee EM, Pollock CA, et al. Molecular changes in proximal tubule function in diabetes mellitus. Clin Exp Pharmacol Physiol 2004; 31(5–6): 372–9

    Article  PubMed  CAS  Google Scholar 

  218. Chuttani HK, Gupta PS, Gulati S, et al. Acute copper sulfate poisoning. Am J Med 1965; 39: 849–54

    Article  PubMed  CAS  Google Scholar 

  219. Franchitto N, Gandia-Mailly P, Georges B, et al. Acute copper sulphate poisoning: a case report and literature review. Resuscitation 2008; 78: 92–6

    Article  PubMed  CAS  Google Scholar 

  220. Nakamura J, Hamada Y, Chaya S, et al. Transition metals and polyol pathway in the development of diabetic neuropathy in rats. Diabetes Metab Res Rev 2002 Sep–Oct; 18(5): 395–402

    Article  PubMed  CAS  Google Scholar 

  221. Cameron NE, Tuck Z, McCabe I, et al. Effects of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia 2001; 44: 1161–9

    Article  PubMed  CAS  Google Scholar 

  222. Smith RG, Heise CC, King JC, et al. Serum and urinary magnesium, calcium and copper levels in insulin-dependent diabetic women. J Trace Elem Electrolytes Health Dis 1988; 2: 239–43

    PubMed  CAS  Google Scholar 

  223. Ito S, Fujita H, Narita T, et al. Urinary copper excretion in type 2 diabetic patients with nephropathy. Nephron 2001; 88: 307–12

    Article  PubMed  CAS  Google Scholar 

  224. Walter RMJ, Uriu-Hare JY, Olin KL, et al. Copper, zinc, manganese, and magnesium status and complications of diabetes mellitus. Diabetes Care 1991; 14: 1050–6

    Article  PubMed  Google Scholar 

  225. Hurrell RF, Ribas S, Davidsson L. NaFe3EDTA as a food fortificant: influence on zinc, calcium and copper metabolism in the rat. Br J Nutr 1994; 71: 85–93

    Article  PubMed  CAS  Google Scholar 

  226. National Institute of Standards and Technology. National Institute of Standards and Technology Critically Selected Stability Constants for Metal Complexes Database, Version 6.0 (20899-3460). Gaithersburg (MD): Department of Commerce, 2001

    Google Scholar 

  227. Jonassen HB, Hurst GG, LeBlanc RB, et al. Inorganic complex compounds containing polydentate groups: VI. Formation constants of complex ions of diethylenetetramine and triethylenetetramine with divalent ions. J Phys Chem 1952; 56: 16–9

    Article  CAS  Google Scholar 

  228. Tisato F, Marzano C, Porchia M, et al. Copper in diseases and treatments, and copper-based anticancer strategies. Medicinal Res Rev 2010; 30(4): 708–49

    CAS  Google Scholar 

  229. Sajithlal GB, Chithra P, Chandrakasan G. An in vitro study on the role of metal catalyzed oxidation in glycation and crosslinking of collagen. Mol Cell Biochem 1999 Apr; 194(1–2): 257–63

    Article  PubMed  CAS  Google Scholar 

  230. Sajithlal GB, Chithra P, Chandrakasan G. The role of metal-catalyzed oxidation in the formation of advanced glycation end products: an in vitro study on collagen. Free Radic Biol Med 1998 Aug; 25(3): 265–9

    Article  PubMed  CAS  Google Scholar 

  231. Birker PJM, Freeman HC. Structure, properties, and function of a copper(I)-copper(II) complex of D-penicillamine: pentathallium(I) mu 8-Chloro-dodeca(D-penicillaminato)octacuprate(I)hexacuprate(II) n-Hydrate. J Am Chem Soc 1977; 99(21): 6890–9

    Article  PubMed  CAS  Google Scholar 

  232. Thich JA, Mastropaolo D, Potenza J, et al. Crystal and molecular structure of bis[copper(II) D-penicillamine disulfide] nonahydrate, a derivative of copper(II) cystinate. J Am Chem Soc 1974; 96(3): 726–31

    Article  PubMed  CAS  Google Scholar 

  233. Tatemichi TK, Desmond DW, Paik M, et al. Clinical determinants of dementia related to stroke. Ann Neurol 1993 Jun; 33(6): 568–75

    Article  PubMed  CAS  Google Scholar 

  234. Skoog I, Nilsson L, Palmertz B, et al. A population-based study of dementia in 85-year-olds. N Engl J Med 1993 Jan 21; 328(3): 153–8

    Article  PubMed  CAS  Google Scholar 

  235. Schönberger SJ, Edgar PF, Kydd R, et al. Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease process. Proteomics 2001 Dec; 1(12): 1519–28

    Article  PubMed  Google Scholar 

  236. Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes 2002 Apr; 51(4): 1256–62

    Article  PubMed  CAS  Google Scholar 

  237. Ritchie K, Lovestone S. The dementias. Lancet 2002; 360: 1759–66

    Article  PubMed  Google Scholar 

  238. Palsdottir A, Helgason A, Palsson S, et al. A drastic reduction in the life span of cystatin C L68Q carriers due to life-style changes during the last two centuries. PLoS Genet 2008; 4(6): e1000099

    Article  PubMed  CAS  Google Scholar 

  239. Loske C, Gerdemann A, Schepl W, et al. Transition metalmediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem 2000 Jul; 267(13): 4171–8

    Article  PubMed  CAS  Google Scholar 

  240. Kowalik-Jankowska T, Ruta-Dolejsz M, Wisniewska K, et al. Coordination of copper(II) ions by the 11–20 and 11–28 fragments of human and mouse beta-amyloid peptide. J Inorg Biochem 2002 Sep 30; 92(1): 1–10

    Article  PubMed  CAS  Google Scholar 

  241. Dong J, Atwood CS, Anderson VE, et al. Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 2003 Mar 18; 42(10): 2768–73

    Article  PubMed  CAS  Google Scholar 

  242. Drew SC, Noble CJ, Masters CL, et al. Pleomorphic copper coordination by Alzheimer’s disease amyloid-beta peptide. J Am Chem Soc 2009; 131: 1195–207

    Article  PubMed  CAS  Google Scholar 

  243. Lin CJ, Huang HC, Jiang ZF. Cu(II) interaction with amyloid-beta peptide: a review of neuroactive mechanisms in AD brains. Brain Res Bull 2010 Jul 30; 82(5–6): 235–42

    Article  PubMed  CAS  Google Scholar 

  244. Squitti R, Lupoi D, Pasqualetti P, et al. Elevation of serum copper levels in Alzheimer’s disease. Neurology 2002 Oct 22; 59(8): 1153–61

    Article  PubMed  CAS  Google Scholar 

  245. Rossi L, Squitti R, Pasqualetti P, et al. Red blood cell copper, zinc superoxide dismutase activity is higher in Alzheimer’s disease and is decreased by D-penicillamine. Neurosci Lett 2002 Aug 30; 329(2): 137–40

    Article  PubMed  CAS  Google Scholar 

  246. Squitti R, Quattrocchi CC, Dal Forno G, et al. Ceruloplasmin (2-D PAGE) pattern and copper content in serum and brain of Alzheimer disease patients. Biomarker Insights 2006; 1: 205–13

    Google Scholar 

  247. Jeynes B, Provias J. The possible role of capillary cerebral amyloid angiopathy in Alzheimer lesion development: a regional comparison. Acta Neuropathol 2006 Oct; 112(4): 417–27

    Article  PubMed  CAS  Google Scholar 

  248. Jellinger KA, Attems J. Cerebral amyloid angiopathy in Lewy body disease. J Neural Transm 2008; 115(3): 473–82

    Article  PubMed  CAS  Google Scholar 

  249. Jellinger KA. Prevalence and impact of cerebrovascular lesions in Alzheimer and Lewy body diseases. Neurodegener Dis 2010; 7(1–3): 112–5

    Article  PubMed  CAS  Google Scholar 

  250. Jellinger KA, Attems J. Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol 2008 Apr; 115(4): 427–36

    Article  PubMed  Google Scholar 

  251. Chalmers K, Wilcock GK, Love S. APOE epsilon 4 influences the pathological phenotype of Alzheimer’s disease by favouring cerebrovascular over parenchymal accumulation of A beta protein. Neuropathol Appl Neurobiol 2003 Jun; 29(3): 231–8

    Article  PubMed  CAS  Google Scholar 

  252. Attems J, Jellinger KA, Lintner F. Alzheimer’s disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol 2005 Sep; 110(3): 222–31

    Article  PubMed  Google Scholar 

  253. Attems J, Lintner F, Jellinger KA. Amyloid beta peptide 1–42 highly correlates with capillary cerebral amyloid angiopathy and Alzheimer disease pathology. Acta Neuropathol 2004 Apr; 107(4): 283–91

    Article  PubMed  CAS  Google Scholar 

  254. Attems J, Jellinger KA. Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology: a pilot study. Acta Neuropathol 2004 Feb; 107(2): 83–90

    Article  PubMed  Google Scholar 

  255. Alafuzoff I, Thal DR, Arzberger T, et al. Assessment of beta-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol 2009 Mar; 117(3): 309–20

    Article  PubMed  CAS  Google Scholar 

  256. Maeda A, Yamada M, Itoh Y, et al. Computer-assisted three-dimensional image analysis of cerebral amyloid angiopathy. Stroke 1993 Dec; 24(12): 1857–64

    Article  PubMed  CAS  Google Scholar 

  257. Nicoll JA, Yamada M, Frackowiak J, et al. Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer’s disease: pro-CAA position statement. Neurobiol Aging 2004 May–Jun; 25(5): 589–97; discussion 603-4

    Article  PubMed  CAS  Google Scholar 

  258. Preston SD, Steart PV, Wilkinson A, et al. Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 2003 Apr; 29(2): 106–17

    Article  PubMed  CAS  Google Scholar 

  259. Sveinbjornsdottir S, Sigurdsson S, Aspelund T, et al. Cerebral microbleeds in the population based AGES-Reykjavik study: prevalence and location. J Neurol Neurosurg Psychiatry 2008; 79: 1002–6

    Article  PubMed  CAS  Google Scholar 

  260. Weller RO, Preston SD, Subash M, et al. Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res Ther 2009; 1(2): 6

    Article  PubMed  CAS  Google Scholar 

  261. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984 May 16; 120(3): 885–90

    Article  PubMed  CAS  Google Scholar 

  262. Sparks DL, Schreurs BG. Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2003 Sep 16; 100(19): 11065–9

    Article  PubMed  CAS  Google Scholar 

  263. Bush AI, Tanzi RE. The galvanization of beta-amyloid in Alzheimer’s disease. Proc Natl Acad Sci U S A 2002 May 28; 99(11): 7317–9

    Article  PubMed  CAS  Google Scholar 

  264. Bush AI. The metallobiology of Alzheimer’s disease. Trends Neurosci 2003 Apr; 26(4): 207–14

    Article  PubMed  CAS  Google Scholar 

  265. Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 2001 Jun; 30(3): 665–76

    Article  PubMed  CAS  Google Scholar 

  266. Squitti R, Salustri C. Agents complexing copper as a therapeutic strategy for the treatment of Alzheimer’s disease. Curr Alzheimer Res 2009 Dec; 6(6): 476–87

    Article  PubMed  CAS  Google Scholar 

  267. Bush AI. Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol Aging 2002 Nov–Dec; 23(6): 1031–8

    Article  PubMed  CAS  Google Scholar 

  268. Brewer GJ. The risks of free copper in the body and the development of useful anticopper drugs. Curr Opin Clin Nutr Metab Care 2008 Nov; 11(6): 727–32

    Article  PubMed  CAS  Google Scholar 

  269. Ritchie CW, Bush AI, Mackinnon A, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 2003 Dec; 60(12): 1685–91

    Article  PubMed  Google Scholar 

  270. Cahoon L. The curious case of clioquinol. Nat Med 2009 Apr; 15(4): 356–9

    Article  PubMed  CAS  Google Scholar 

  271. Lannfelt L, Blennow K, Zetterberg H, et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 2008; 7(9): 779–86

    Article  PubMed  CAS  Google Scholar 

  272. Di Vaira M, Bazzicalupi C, Orioli P, et al. Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes. Inorg Chem 2004; 43(13): 3795–7

    Article  PubMed  CAS  Google Scholar 

  273. Ferrada E, Arancibia V, Loeb B, et al. Stoichiometry and conditional stability constants of Cu(II) or Zn(II) clioquinol complexes; implications for Alzheimer’s and Huntington’s disease therapy. Neurotoxicol 2007; 28(3): 445–9

    Article  CAS  Google Scholar 

  274. Bush AI. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 2008; 15(2): 223–40

    PubMed  CAS  Google Scholar 

  275. McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2001; 51: 7–18

    Article  Google Scholar 

  276. Anastasiou E, Lekakis JP, Alevizaki M, et al. Impaired endothelium-dependent vasodilatation in women with previous gestational diabetes. Diabetes Care 1998; 21: 2111–5

    Article  PubMed  CAS  Google Scholar 

  277. Meigs JB, O’Donnell CJ, Tofler GH, et al. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes. The Framingham Offspring study. Diabetes 2006; 55: 530–7

    CAS  Google Scholar 

  278. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications: part 1. Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998 Jul; 15(7): 539–53

    Article  CAS  Google Scholar 

  279. NAVIGATOR Study Group. Effect of valsartan on the incidence of diabetes and cardiovascular risk. N Engl J Med 2010; 362(16): 1477–90

    Article  Google Scholar 

  280. Greenstein AS, Paranthaman R, Burns A, et al. Cerebrovascular damage in late-life depression is associated with structural and functional abnormalities of subcutaneous small arteries. Hypertension 2010 Oct; 56(4): 734–40

    Article  PubMed  CAS  Google Scholar 

  281. Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84: 825–89

    Article  PubMed  CAS  Google Scholar 

  282. Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998; 158: 47–52

    Article  PubMed  CAS  Google Scholar 

  283. Stadler N, Lindner RA, Davies MJ. Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper. Arterioscler Thromb Vasc Biol 2004; 24(5): 949–54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks C.A. Tse and V. Ward (School of Biological Sciences, University of Auckland, New Zealand) for administrative assistance/manuscript editing and art work, respectively. I also thank all of my colleagues who have contributed to this work over the past years. Work on this programme in my laboratories has been funded by grants from Endocore Research Associates; the Maurice and Phyllis Paykel Trust; Lottery Health (New Zealand); the Auckland Medical Research Foundation; the University of Auckland; the Department of Education (New Zealand) through a grant to the Maurice Wilkins Centre of Excellence for Molecular Biodiscovery; Protemix Corporation Ltd.; Fight for Sight (UK); and by programme grants from the Foundation for Research Science and Technology, New Zealand, and from the Health Research Council of New Zealand.

GJS Cooper acts as an honorary consultant to PhilERA, holder of patent rights to triethylenetetramine for the treatment of diabetes and related metabolic diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garth J. S. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, G.J.S. Therapeutic Potential of Copper Chelation with Triethylenetetramine in Managing Diabetes Mellitus and Alzheimer’s Disease. Drugs 71, 1281–1320 (2011). https://doi.org/10.2165/11591370-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11591370-000000000-00000

Keywords

Navigation