Estradiol inhibits glucocorticoid receptor expression and induces glucocorticoid resistance in MCF-7 human breast cancer cells

J Steroid Biochem Mol Biol. 2001 Apr;77(1):29-37. doi: 10.1016/s0960-0760(01)00030-9.

Abstract

Our study has shown that treatment of MCF-7 human breast cancer cells with 17-beta estradiol (E(2)) produced significant decreases in glucocorticoid receptor (GR) concentrations and GR mRNA levels. E(2) pre-treatment of MCF-7 cells stably transfected with the GR responsive pMTV-CAT reporter (MCF-7-MTV cells), caused significant attenuation of dexamethasone (DEX)-induced chloramphenicol acetyl transferase (CAT). In MCF-7 cells transiently transfected with [(GRE)(3)-Luc] reporter plasmid, E(2) pre-treatment significantly suppressed DEX-induced luciferase, which was abolished by the estrogen receptor antagonist ICI 182,780. We examined the effect of chronic E(2) treatment as well as E(2) withdrawal on GR function and abundance. MCF-7-MTV cells were treated with vehicle (control) or E(2) for up to 16 days. A third group received E(2) for 5 days followed by E(2) withdrawal from day 6 to 16. Chronic E(2) treatment almost totally abrogated DEX-induced CAT and reduced GR to very low levels. Interestingly, in the group subjected to E(2) withdrawal, neither the DEX response nor GR abundance recovered and reached control values suggesting that the estrogen mediated suppression is long lasting and could not be easily reversed. The E(2) induced resistance to glucocorticoid action may be of potential clinical significance in a number of settings including breast cancer, neuroendocrine response to stress and osteoporosis and could possibly contribute to the differences in glucocorticoid responsiveness among patients.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Dexamethasone / pharmacology*
  • Drug Resistance, Neoplasm*
  • Estradiol / pharmacology*
  • Humans
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Receptors, Glucocorticoid / genetics
  • Receptors, Glucocorticoid / metabolism*
  • Tumor Cells, Cultured

Substances

  • RNA, Messenger
  • Receptors, Glucocorticoid
  • Estradiol
  • Dexamethasone