Aging of modulation of heart rate

Am J Physiol. 1987 Oct;253(4 Pt 2):H874-7. doi: 10.1152/ajpheart.1987.253.4.H874.

Abstract

We postulated that measurements of autonomically mediated fluctuations in heart rate might provide a quantitative probe of biological aging. We used power spectrum analysis of instantaneous heart rate while 33 male subjects matched their breathing to a metronome at 15 breaths/min. Measurements were made in supine and standing position. Total power and its two major components, high- and low-frequency power, declined with age in both positions but at different rates. High-frequency power that represents parasympathetically mediated respiratory sinus arrhythmia declined linearly in supine position only in subjects 9-28 yr with a slope of -0.796, which was significantly different from zero at P = 0.0007. The absolute value of high-frequency power in standing position was approximately 60% of that in supine, a difference that was statistically significant (P = 0.01). Low-frequency power that represents beta-adrenergically mediated heart rate fluctuations, especially in standing position, declined linearly to 62 yr of age (P = 0.0001). Mean heart rate increased 17.2 beats/min, and diastolic blood pressure increased 8 mmHg in the entire group in the standing compared with supine position. There were no significant differences in these changes above and below 30 yr of age. We conclude that the influence of the two major mechanisms that modulate heart rate decline at significantly different rates with aging.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Aging*
  • Child
  • Heart Rate*
  • Humans
  • Male
  • Middle Aged
  • Parasympathetic Nervous System / physiology
  • Posture
  • Reference Values
  • Respiration